

TECHNO INDIA UNIVERSITY, WEST BENGAL

CURRICULUM

For

MASTERS

IN

PHYSICS

DEPARTMENT OF PHYSICS

Department of Physics

Techno India University, West Bengal, Kolkata - 700091 (India)

Effective from academic year 2024-2025 onwards

TECHNO INDIA UNIVERSITY

WESTBENGAL

STRUCTURE OF MSc PHYSICS

	Code	Name of the subject	Р	С			
		Theory					
	TIU-PPH-T115	Electronics	Electronics 3 1 0				
12	TIU-PPH-T113	Classical Mechanics 3 1 0				4	
SEMESTER	TIU-PPH-T111	Mathematical Methods of Physics	3	1	0	4	
ME	TIU-PPH-T107	Quantum Mechanics-I	0	3			
SI		Practical					
	TIU-PPH-L115	Electronics Lab	0	0	6	3	
	TIU-PPH-L111	1Computer Programming Lab (through C/C++)004					
		Total				20	

	Code	Name of the subject	L	Т	Р	С			
		Theory							
	TIU-PPH-T102	Numerical Method & Computational Technique	3	0	0	3			
II	TIU-PPH-T104	Electrodynamics	3	1	0	4			
rer	TIU-PPH-T108	Quantum Mechanics-II	2	1	0	3			
SEMESTER I	TIU-PPH-T112	Solid State Physics	1	0	4				
SEI	TIU-PPH-T116	Atomic and Molecular Physics310							
		Practical							
	TIU-PPH-L102	Numerical Methods and Programming Lab	4	2					
	TIU-PPH-L112General Physics Lab-I00								
		Total				23			

	Code	L	Т	Р	С				
	Theory								
	TIU-PPH-T215	Nuclear Physics	3	1	0	4			
	TIU-PPH-T217	Statistical Mechanics	3	1	0	4			
	TIU-PPH-T219	Material Physics I* (Special Paper – I*)	3	1	0	4			
	TIU-PPH-T221	Nuclear Reaction I* (Special Paper – I*)	3	1	0	4			
S III S	TIU-PPH-E203A	Introduction to Cryogenics and Vacuum Technology (Elective Paper I**)	3	1	0	4			
SEMESTER III	TIU-PPH-E203B Physics of Nanomaterials and thin films (Elective Paper I**)				0	4			
EMI	Practical								
SI	TIU-PPH-L201 General Physics Lab-II				6	3			
	Sessional					-			
	TIU-PES-S291 Entrepreneurship Skill Development I		0	0	2	1			
	TIU-PPH-P297 Project I		0	0	4	2			
	TIU-PPH-L205	Introduction to Python Programming	0	0	4	2			
	TIU-PPH-L203	Use of AI and Different Software for scientific Research	0	0	4	2			
	Total								

*Special Paper – I (Any one) [Semester III]	**Elective Paper I (Any one) [Semester III]
1. Material Physics I	1. Introduction to Cryogenics
2. Nuclear Reaction I	2. Physics of Nanomaterials and thin films

	Code	L	Т	Р	C					
				<u> </u>						
	TIU-PPH-T220	Material Physics II* (Special Paper – II*)	3	1	0	4				
	TIU-PPH-T222	Nuclear Reaction II* (Special Paper – II*)	3	1	0	4				
	TIU-PPH-E204A	Superconducting Materials and Devices (Elective Paper – II**)	3	1	0	4				
	TIU-PPH-E204B	Renewable Energy and Energy Harvesting (Elective Paper – II**)	3	1	0	4				
Λ	TIU-PPH-E206A Advanced Condensed Matter Physics (Elective Paper III***) 3					4				
SEMESTER IV	TIU-PPH-E206B	Introduction to Plasma Physics (Elective Paper III***)	3	1	0	4				
EMES	TIU-PPH-E206C	3	1	0	4					
S	Practical									
	TIU-PPH-L202	Advanced Physics Lab	0	0	6	3				
	Sessional									
	TIU-PES-S292Entrepreneurship Skill Development II002		2	1						
	TIU-PPH-P298Project II0		0	12	6					
	TIU-PPH-G298	0	0	4	2					
	TIU-PPH-L208	0	0	4	2					
		Total				26				

*Special Paper – II (Any one) [Semester IV]	**Elective Paper - II(Any one) [Semester IV]
1. Material Physics II	1. Superconducting Materials and Devices
2. Nuclear Physics II	2. Renewable Energy and Energy Harvesting
***Elective Paper - III(Any one) [Semester IV]	
1. Advanced Condensed Matter Physics	
2. Introduction to Plasma Physics	
3. Laser Physics	

**NOTE: Total teaching hours for a 4 credit course = 39 - 45 hours (3 lecture hours, 1 tutorial)
 Total teaching hours for a 3 credit course = 39 - 45 hours
 Total teaching hours for a 2 credit course = 30 hours
 Total teaching hours for a 1 credit course = 15 hours

SEMESTER I

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 1 st Sem.			
Course Title: Electronics	Subject Code: TIU-PPH-T115			
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4			

COURSE OBJECTIVE :

Enable the student to:

- 1. Expand fundamental electronics knowledge by exploring advanced topics such as circuit analysis.
- 2. Understand the utilization of semiconductor devices in both analog and digital circuits.
- 3. Develop the ability to analyze and design complex electronic circuits for various applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the mathematical representation of electrical networks using different matrices and response functions.	К2
CO-2:	Analyze the characteristics and high-frequency behavior of semiconductor devices.	K4
CO-3:	Apply feedback and phase shift techniques in active filter design.	К3
CO-4:	Apply operational amplifier principles in practical circuit design.	К3
CO-5:	Apply digital logic design techniques and microprocessor basics.	КЗ
CO-6:	Analyze and design modulation and detection systems for communication applications.	K4

MODULE 1:	RCUIT ANALYSIS 10 Ho					
Admittance, in	Admittance, impedance, scattering and hybrid matrices for two and three port networks and their					
cascade and pa	cascade and parallel combinations. Review of Laplace Transforms. Response functions, location of					
poles and zeros of response functions of active and passive systems (Nodal and Modified Nodal						
Analysis).						

MODULE 2: SEMICONDUCTOR DEVICE PHYSICS 10 Hours Reviews on p-n junction, BJT, JFET, equivalent circuits and high frequency effects, UJT; 4 layer pn pn device (SCR), MOS diode, accumulation, depletion and inversion, MOSFET: I-V, C-V characteristics. Enhancement and depletion mode MOSFET. Metal-semiconductor junctions; Ohmic and rectifying contacts, Schottky diode, I-V, C-V relations. 5 Hours MODULE 3: ANALOG CIRCUITS 5 Hours Active filters and equalizers with feedback, Phase shift and delay. 4 Hours Op Amps and its applications. 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. 8 Hours MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. 45 Hours**			1					
pn device (SCR), MOS diode, accumulation, depletion and inversion, MOSFET: I-V, C-V characteristics. Enhancement and depletion mode MOSFET. Metal-semiconductor junctions; Ohmic and rectifying contacts, Schottky diode, I-V, C-V relations. 5 Hours MODULE 3: ANALOG CIRCUITS 5 Hours Active filters and equalizers with feedback, Phase shift and delay. 4 Hours Op Amps and its applications. 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. 8 Hours MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.								
characteristics. Enhancement and depletion mode MOSFET. Metal-semiconductor junctions; Ohmic and rectifying contacts, Schottky diode, I-V, C-V relations.MODULE 3:ANALOG CIRCUITS5 HoursActive filters and equalizers with feedback, Phase shift and delay.4 HoursMODULE 4:OPERATIONAL AMPLIFIER4 HoursOp Amps and its applications.8 HoursMODULE 5:DIGITAL CIRCUITS8 HoursIntroduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller.8 HoursMODULE 6:COMMUNICATION SYSTEMS8 HoursAmplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	Reviews on p-n junction, BJT, JFET, equivalent circuits and high frequency effects, UJT; 4 layer pn							
and rectifying contacts, Schottky diode, I-V, C-V relations.5 HoursMODULE 3:ANALOG CIRCUITS5 HoursActive filters and equalizers with feedback, Phase shift and delay.4 HoursMODULE 4:OPERATIONAL AMPLIFIER4 HoursOp Amps and its applications.8 HoursMODULE 5:DIGITAL CIRCUITS8 HoursIntroduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller.8 HoursMODULE 6:COMMUNICATION SYSTEMS8 HoursAmplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.1	pn device (SCR), MOS diode, accumulation, depletion and inversion, MOSFET: I-V, C-V							
MODULE 3: ANALOG CIRCUITS 5 Hours Active filters and equalizers with feedback, Phase shift and delay. 4 Hours MODULE 4: OPERATIONAL AMPLIFIER 4 Hours Op Amps and its applications. 4 Hours 9 Amps and its applications. MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. 8 Hours MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. 9	characteristics	. Enhancement and depletion mode MOSFET. Metal-semiconductor ju	nctions; Ohmic					
Active filters and equalizers with feedback, Phase shift and delay. MODULE 4: OPERATIONAL AMPLIFIER 4 Hours Op Amps and its applications. 9 Hours 8 Hours MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. 8 Hours MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	and rectifying	contacts, Schottky diode, I-V, C-V relations.						
Active filters and equalizers with feedback, Phase shift and delay. MODULE 4: OPERATIONAL AMPLIFIER 4 Hours Op Amps and its applications. 9 Hours 8 Hours MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. 8 Hours MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.		· · · · ·						
MODULE 4: OPERATIONAL AMPLIFIER 4 Hours Op Amps and its applications. Operations. 8 Hours MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	MODULE 3:	ANALOG CIRCUITS	5 Hours					
MODULE 4: OPERATIONAL AMPLIFIER 4 Hours Op Amps and its applications. Operations. 8 Hours MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.								
Op Amps and its applications. B Hours MODULE 5: DIGITAL CIRCUITS 8 Hours Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. A/D and D/A MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. Interval	Active filters a	nd equalizers with feedback, Phase shift and delay.						
MODULE 5:DIGITAL CIRCUITS8 HoursIntroduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller.A/D A down D/AMODULE 6:COMMUNICATION SYSTEMS8 HoursAmplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.Image: Communication of signals.	MODULE 4:	OPERATIONAL AMPLIFIER	4 Hours					
MODULE 5:DIGITAL CIRCUITS8 HoursIntroduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller.A/D A down D/AMODULE 6:COMMUNICATION SYSTEMS8 HoursAmplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.Image: Communication of signals.								
Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. MODULE 6: COMMUNICATION SYSTEMS Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	Op Amps and i	ts applications.						
Introduction to digital IC parameters (switching time, propagation delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. MODULE 6: COMMUNICATION SYSTEMS Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.			0.11					
MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. Image: Communication of signals.	MODULE 5:	DIGITAL CIRCUITS	8 Hours					
MOS and CMOS gates, Emitter-coupled logic, MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller. MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. Image: Communication of signals.	Introduction to	digital IC parameters (switching time, propagation delay, fan out, fa	n in etc.) TTI					
converters. Basics of micro-processor and micro-controller. MODULE 6: COMMUNICATION SYSTEMS Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.			-					
MODULE 6: COMMUNICATION SYSTEMS 8 Hours Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals. 8 Hours			A/D and D/A					
Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	converters. Ba	sics of micro-processor and micro-controller.						
Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication system, classification of signals, representation of signals.	MODULE 6	COMMUNICATION SYSTEMS	8 Hours					
system, classification of signals, representation of signals.			onours					
system, classification of signals, representation of signals.	Amplitude, Angle and Pulse-analog modulation: Generation and detection. Model of communication							
TOTAL LECTURES 45 Hours**	-,,							
	TOTAL LECTURES 45 Hours**							

Books:

- 1. Network Analysis and Syntesis, F. F. Kuo (2nd ED., Wiley, 2010)
- 2. Electronic Devices and Circuits, J. Millman and C. C. Halkias and S. Jit (4th Ed., 18 McGraw-Hill, 2015)
- 3. Integrated Electronics, J. Millman, C. C. Halkias and C. D. Parikh (2nd Ed., McGrawHill, 2011)
- 4. Communication Systems, Simon Haykins (5th Ed., Wiley, 2009)
- 5. Digital Signal Processing, J. G. Proakis and D. G. Manolakis (4th Ed., Pearson, 2007)
- Introduction to Semiconductor Materials and Devices, M. S. Tyagi (1st Ed., Wiley, 2012)
- 7. Digital principles and Applications, A.P. Malvino and D.P.Leach (8th Ed., McGrawHill, 2014)
- 8. Network Analysis with Applications, W.D. Stanley (4th Ed., Pearson, 2003)
- 9. Solid State Electronic Devices, B.G. Streetman (7th Ed., Pearson, 2015)

10. Digital Design, M. Mano (5th Ed., Pearson, 2013)

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	3	3	2
CO-2	3	3	3	2	-	-	-	1	3	3	2
CO-3	3	3	3	3	-	-	-	1	3	3	2
CO-4	3	3	2	2	-	-	-	1	3	3	2
CO-5	3	3	3	3	-	-	-	1	3	3	2
CO-6	3	3	3	3	-	-	-	1	3	3	2
Average	3	3	2.67	2.50	0	0	0	1	3	3	2

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 1st Yr., 1st Sem.		
Course Title: Classical Mechanics	Subject Code: TIU-PPH-T113		
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4		

COURSE OBJECTIVE :

Enable the student to:

- 1. To provide a deep understanding of classical mechanics through Lagrangian and Hamiltonian formulations.
- 2. To analyze central force problems, small oscillations, and rigid body motion using advanced mathematical techniques.
- 3. To introduce classical field theory and fundamental concepts of relativity, including gravitational waves and spacetime curvature.
- 4. Integrate Lagrangian and Hamiltonian principles into relativistic mechanics, bridging the gap between classical and modern physics.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamental principles of Lagrangian mechanics, including generalized coordinates, D'Alembert's principle, and the equations of motion.	K2
CO-2:	Apply Hamiltonian mechanics to physical systems by utilizing Legendre transformations, Poisson brackets, and canonical transformations.	К3
CO-3:	Analyze small oscillations in mechanical systems using eigenvalue problems, normal modes, and dissipation effects.	K4
CO-4:	Explain the Lagrangian and Hamiltonian formulation of continuous systems and their role in classical field theory.	K2
CO-5:	Solve problems related to the special theory of relativity, including Lorentz transformations, relativistic kinematics, and mass-energy relationships.	К3
CO-6:	Identify and describe the transformation of fields and potentials in relativistic electrodynamics and the basics of chaotic dynamical systems.	K1

COURSE CONTENT :

MODULE 1: LAGRANGIAN MECHANICS **10 Hours** Generalized coordinates, Principle of virtual work, D'Alembert's principle, Lagrange equation and Hamilton's principle, Lagrange equation from Hamilton's principle, Central force including Two body problem in central force, Equations of motion, Effective potential energy, Virial theorem, Kepler's problem

MODULE 2: HAMILTONIAN FORMULATION

Legendre transformations, Hamilton's equations, Symmetries and conservation laws in Hamiltonian picture, Hamilton's principle, Canonical transformations, Poisson brackets, Hamilton-Jacobi theory, Action-angle variables.

MODULE 3: **SMALL OSCILLATIONS**

Eigen value problem, frequencies of free vibrations and normal modes, forced vibrations, dissipation.

CLASSICAL FIELD THEORY MODULE 4:

Lagrangian and Hamiltonian formulation of continuous system, Symmetry and Conservation Laws

SPECIAL THEORY OF RELATIVITY MODULE 5:

Inadequacy of classical mechanics, Lorentz Transform, Relativistic Kinematics and Mass-Energy Relationship, Transformation of fields and potentials, Classical Electrodynamics, Chaotic Dynamical Systems.

TOTAL LECTURES

Books:

- 1. H. Goldstein, C. P. Poole and J. Safko, *Classical Mechanics*, 3rd Edition, Pearson (2012).
- 2. N. C. Rana and P. S. Joag, *Classical Mechanics*, Tata Mcgraw Hill (2001).
- 3. L. Landau and E. Lifshitz, *Mechanics*, Oxford (1981).
- 4. S. N. Biswas, *Classical Mechanics*, Books and Allied (P) Ltd., Kolkata (2004).
- 5. F. Scheck, *Mechanics*, Springer (1994).

CO-PO Mapping

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	2	-	-	-	-	-	-	3	-	-
CO-2	3	3	2	2	-	-	-	-	3	-	1
CO-3	3	2	-	-	-	-	-	-	3	-	-
CO-4	3	3	-	-	-	-	-	-	3	-	-
CO-5	1	3	-	-	-	-	-	-	3	-	-
CO-6	3	3	2	-	-	-	-	-	3	-	-
Average	2.67	2.67	2	2	0	0	0	0	3	0	0

10 Hours

8 Hours

8 Hours

9 Hours

45 Hours**

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 1st Yr., 1st Sem.
Course Title: Mathematical Methods for Physics	Subject Code: TIU-PPH-T111
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

1. Distinguish between real and complex analysis by exploring complex functions, differentiability, and analyticity.

2. Develop a strong foundation in vector spaces, linear transformations, and basis functions.

3. Analyze the theory of groups, homomorphisms, isomorphisms, and permutation groups.

4. Develop an understanding of Legendre polynomials, Bessel functions, and their applications in solving differential equations.

5. Understand the fundamentals of contravariant, covariant, and mixed tensors.

6. Master Laplace transforms, inverse Laplace transforms, Fourier integrals, and their applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

Distinguish between complex variables and complex variable algebra from is real counterpart and apply complex variable properties and algebra to solve a problem in mathematical methods of physicsK4Construct and modify the concept of vector spaces and the concept of operators and use operators are used in different branches of physics to simplify calculations.K4CO-2: implify calculations.Investigate and devise the theory of groups, homomorphism, isomorphism and permutation groups so as to be able to apply these concepts to classify mathematical objectsK4CO-4: Function.Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3CO-5: mixed tensors and algebra related to tensors to apply the abstract concepts of representation of a physical quantity in higher dimension.K3CO-6: Fourier Integrals and time series analysisK4K3			
solve a problem in mathematical methods of physicsK4Construct and modify the concept of vector spaces and the concept of operators and use operators are used in different branches of physics to simplify calculations.K4Co-2:Investigate and devise the theory of groups, homomorphism, isomorphism and permutation groups so as to be able to apply these concepts to classify mathematical objectsK4Co-3:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3Co-4:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3Co-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3K3			
Construct and modify the concept of vector spaces and the concept of operators and use operators are used in different branches of physics to simplify calculations.K4CO-2:Investigate and devise the theory of groups, homomorphism, isomorphism and permutation groups so as to be able to apply these concepts to classify mathematical objectsK4CO-4:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3CO-4:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3CO-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3K3	CO-1:	its real counterpart and apply complex variable properties and algebra to	K4
CO-2:operators and use operators are used in different branches of physics to simplify calculations.K4CO-3:Investigate and devise the theory of groups, homomorphism, isomorphism and permutation groups so as to be able to apply these concepts to classify mathematical objectsK4CO-3:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3CO-4:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3CO-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3K3		solve a problem in mathematical methods of physics	
simplify calculations.Investigate and devise the theory of groups, homomorphism, isomorphismC0-3:Investigate and devise the theory of groups, homomorphism, isomorphismand permutation groups so as to be able to apply these concepts to classifyK4mathematical objectsK4C0-4:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3C0-4:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3C0-5:Optimize and solve Laplace's Transform, Inverse Laplace's Transform,K3		Construct and modify the concept of vector spaces and the concept of	
Investigate and devise the theory of groups, homomorphism, isomorphismC0-3:Investigate and devise the theory of groups, homomorphism, isomorphismand permutation groups so as to be able to apply these concepts to classifyK4mathematical objectsK4C0-4:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3C0-5:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3C0-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform,K3	CO-2:	operators and use operators are used in different branches of physics to	K4
CO-3:and permutation groups so as to be able to apply these concepts to classify mathematical objectsK4CO-4:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3CO-4:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract conceptsK3CO-5:Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3		simplify calculations.	
mathematical objects Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract concepts K3 C0-4: Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract concepts of representation of a physical quantity in higher dimension. K3 C0-6: Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3		Investigate and devise the theory of groups, homomorphism, isomorphism	
CO-4:Construct the concepts of Legendre, Bessel's Functions and Green's Function.K3CO-4:Function.K3CO-5:Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract concepts of representation of a physical quantity in higher dimension.K3CO-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform,K3	CO-3:	and permutation groups so as to be able to apply these concepts to classify	K4
CO-4: Function. K3 Function. Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract concepts of representation of a physical quantity in higher dimension. K3 CO-6: Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3		mathematical objects	
Function. Function. C0-5: Interpret and Utilize the fundamentals of contravariant, covariant and mixed tensors and algebra related to tensors to apply the abstract concepts of representation of a physical quantity in higher dimension. C0-6: Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3	CO-4:	Construct the concepts of Legendre, Bessel's Functions and Green's	K3
CO-5:mixed tensors and algebra related to tensors to apply the abstract conceptsK3of representation of a physical quantity in higher dimension.CO-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3	00-4.	Function.	K5
of representation of a physical quantity in higher dimension.CO-6:Optimize and solve Laplace's Transform, Inverse Laplace's Transform,		Interpret and Utilize the fundamentals of contravariant, covariant and	
Optimize and solve Laplace's Transform, Inverse Laplace's Transform, K3	CO-5:	mixed tensors and algebra related to tensors to apply the abstract concepts	К3
(⁽⁾ -6 ⁺)		of representation of a physical quantity in higher dimension.	
Fourier Integrals and time series analysis	CO 61	Optimize and solve Laplace's Transform, Inverse Laplace's Transform,	V2
	0.0-0:	Fourier Integrals and time series analysis	кЭ

COURSE CONTENT :

MODULE 1:	COMPLEX VARIABLE	4 Hours
Cauchy-Riem	ann equation, Cauchy's integral formula.	
MODULE 2:	LINEAR SPACE AND OPERATORS	6 Hours
-	nner product space, Linear operators, matrix representation of operat ary operators, orthogonality	ors, conjugate
MODULE 3:	GROUPS	8 Hours
Definition of g of Group theor	roups, isomorphism, homomorphism, Permutation groups, SU(2), O(3) y in physics); Applications
MODULE 4:	DIFFERENTIAL EQUATIONS	10 Hours
The hypergeon	netric equation and functions; Confluent hypergeometric equation a	and functions;
Representation	n of Legendre, Bessel and Hermite functions in terms of hypergeome	tric functions.
Properties of I	Legendre, Bessel, Hermite and Green's Functions. Applications of Leg	endre, Bessel,
Hermite and G	reen's Functions	
MODULE 5:	TENSORS	
		8 Hours
	tion, contravariant, covariant and mixed tensors and their ranks, Out	ter product of
		ter product of
tensors, contra	tion, contravariant, covariant and mixed tensors and their ranks, Out	ter product of netric tensors,
tensors, contra Kronecker delt	tion, contravariant, covariant and mixed tensors and their ranks, Out action of tensors, inner product of tensors, Symmetric and antisymm a, Metric tensor, raising and lowering of indices. Application of tensor	ter product of netric tensors, theory
tensors, contra Kronecker delt MODULE 6:	tion, contravariant, covariant and mixed tensors and their ranks, Out action of tensors, inner product of tensors, Symmetric and antisymm a, Metric tensor, raising and lowering of indices. Application of tensor TRANSFORM THEORY	ter product of netric tensors, theory 9 Hours
tensors, contra Kronecker delt MODULE 6: Laplace trans	tion, contravariant, covariant and mixed tensors and their ranks, Out action of tensors, inner product of tensors, Symmetric and antisymm a, Metric tensor, raising and lowering of indices. Application of tensor TRANSFORM THEORY sformation and inverse Laplace transformation, Applications	ter product of netric tensors, theory 9 Hours of Laplace
tensors, contra Kronecker delt MODULE 6: Laplace trans transformation	tion, contravariant, covariant and mixed tensors and their ranks, Out action of tensors, inner product of tensors, Symmetric and antisymm a, Metric tensor, raising and lowering of indices. Application of tensor TRANSFORM THEORY sformation and inverse Laplace transformation, Applications a, Use of Fourier transformation in solving differential equations	ter product of netric tensors, theory 9 Hours of Laplace
tensors, contra Kronecker delt MODULE 6: Laplace trans	tion, contravariant, covariant and mixed tensors and their ranks, Out action of tensors, inner product of tensors, Symmetric and antisymm a, Metric tensor, raising and lowering of indices. Application of tensor TRANSFORM THEORY sformation and inverse Laplace transformation, Applications a, Use of Fourier transformation in solving differential equations pplications	ter product of netric tensors, theory 9 Hours of Laplace

Books:

- 1. G. B. Arfken, H. J. Weber and F. E. Harris, *Mathematical Methods for Physicists*, Seventh Edition, Academic Press (2012).
- 2. S. Andrilli & D. Hecker, *Elementary Linear Algebra*, Academic Press (2006).
- 3. A.W. Joshi, *Elements of Group Theory*, New Age Int. (2008).
- 4. A.W. Joshi, *Matrices and Tensors in Physics*, 3rd Edition, New Age Int. (2005).
- 5. M. L. Boas, *Mathematical Methods in Physical Sciences*, John Wiley & Sons (2005).
- 6. S. Lang, *Introduction to Linear Algebra*, Second Edition, Springer (2012).
- 7. T. Lawson, *Linear Algebra*, John Wiley & Sons (1996).
- 8. P. Dennery & A. Krzywicki, *Mathematics for Physicists*, Dover Publications (1996).

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	1	3	-	-
CO2	3	3	-	-	-	-	-	1	3	-	-
CO3	3	3	-	-	-	-	-	1	3	-	-
CO4	3	2	-	-	-	-	-	1	3	-	-
CO5	3	2	-	-	-	-	-	1	3	-	-
CO6	3	2	-	-	-	-	-	1	3	-	-
Average	3	2.33	0	0	0	0	0	1	3	0	0

Program: M. Sc. in Physics	Year, Semester: 1st Yr., 1st Sem.
Course Title: Quantum Mechanics-I	Subject Code: TIU-PPH-T107
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to

- 1. To introduce the fundamental concepts of linear vector spaces and their applications in quantum mechanics.
- 2. To provide a detailed understanding of angular momentum, its algebra, eigenvalues, and eigenstates in quantum systems.
- 3. To explore three-dimensional quantum problems, including the hydrogen atom, and apply perturbation theory to understand real-world physical phenomena.

COURSE OUTCOME :

On completion of the course, the student will be able to:

Recall and define fundamental concepts of quantum mechanics such as postulates of quantum mechanics, Schrödinger equation in 1D, inner product spaces, operators, eigenvalues, eigenvectors, and Dirac notation.K1C0-2:Explain the principles of angular momentum, including spin angular momentum, Pauli matrices, and the addition of angular momentum.K2C0-3:Apply the principles of quantum mechanics to solve three dimension problems involving spherical harmonics, central potentials, and the hydrogen atom.K3C0-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4C0-5:systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3C0-6:Analyze the behavior and structure of multi-electron systems like the helium atom, considering Pauli's Exclusion Principle and exchange interactions.K4			
Product spaces, operators, eigenvalues, eigenvectors, and Dirac notation.CO-2:Explain the principles of angular momentum, including spin angular momentum, Pauli matrices, and the addition of angular momentum.K2CO-2:Apply the principles of quantum mechanics to solve three dimension problems involving spherical harmonics, central potentials, and the hydrogen atom.K3CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-5:systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3		Recall and define fundamental concepts of quantum mechanics such as	
CO-2:Explain the principles of angular momentum, including spin angular momentum, Pauli matrices, and the addition of angular momentum.K2CO-2:Apply the principles of quantum mechanics to solve three dimension problems involving spherical harmonics, central potentials, and the hydrogen atom.K3CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-5:Systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3	CO-1:	postulates of quantum mechanics, Schrödinger equation in 1D, inner	K1
CO-2:momentum, Pauli matrices, and the addition of angular momentum.K2Apply the principles of quantum mechanics to solve three dimensionK3CO-3:problems involving spherical harmonics, central potentials, and theK3hydrogen atom.K4CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-5:Apply time-independent perturbation theory to calculate energy shifts in interactions.K3		product spaces, operators, eigenvalues, eigenvectors, and Dirac notation.	
momentum, Pauli matrices, and the addition of angular momentum.Apply the principles of quantum mechanics to solve three dimensionCO-3:problems involving spherical harmonics, central potentials, and thehydrogen atom.CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-5:Systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3CO-6:Analyze the behavior and structure of multi-electron systems like the heliumK4	CO-2.	Explain the principles of angular momentum, including spin angular	K3
CO-3:problems involving spherical harmonics, central potentials, and the hydrogen atom.K3CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-4:Apply time-independent perturbation theory to calculate energy shifts in systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3	CO-2.	momentum, Pauli matrices, and the addition of angular momentum.	IX2
hydrogen atom. Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory. K4 CO-4: Apply time-independent perturbation theory to calculate energy shifts in systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions. K3 CO-6: Analyze the behavior and structure of multi-electron systems like the helium K4		Apply the principles of quantum mechanics to solve three dimension	
CO-4:Analyze the effects of perturbations in quantum systems, including the Zeeman and Stark effects, using time-independent perturbation theory.K4CO-5:Apply time-independent perturbation theory to calculate energy shifts in systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions.K3CO-6:Analyze the behavior and structure of multi-electron systems like the heliumK4	CO-3:	problems involving spherical harmonics, central potentials, and the	КЗ
CO-4: Zeeman and Stark effects, using time-independent perturbation theory. K4 Apply time-independent perturbation theory to calculate energy shifts in systems with relativistic corrections, spin-orbit coupling, and hyperfine interactions. K3 CO-6: Analyze the behavior and structure of multi-electron systems like the helium K4		hydrogen atom.	
Zeeman and Stark effects, using time-independent perturbation theory. Apply time-independent perturbation theory to calculate energy shifts in systems with relativistic corrections, spin-orbit coupling, and hyperfine K3 interactions. CO-6: Analyze the behavior and structure of multi-electron systems like the helium K4	<u> </u>	Analyze the effects of perturbations in quantum systems, including the	K/
CO-5: systems with relativistic corrections, spin-orbit coupling, and hyperfine K3 interactions. K3 CO-6: Analyze the behavior and structure of multi-electron systems like the helium K4	60-4:	Zeeman and Stark effects, using time-independent perturbation theory.	N4
interactions. Image: Analyze the behavior and structure of multi-electron systems like the helium		Apply time-independent perturbation theory to calculate energy shifts in	
CO-6: Analyze the behavior and structure of multi-electron systems like the helium	CO-5:	systems with relativistic corrections, spin-orbit coupling, and hyperfine	КЗ
		interactions.	
atom, considering Pauli's Exclusion Principle and exchange interactions.	CO-6:	Analyze the behavior and structure of multi-electron systems like the helium	KV.
· · · · · · · · · · · · · · · · · · ·	CO-0:	atom, considering Pauli's Exclusion Principle and exchange interactions.	134

Review based on postulates of Quantum Mechanics and Schrödinger equation.

OVERVIEW OF LINEAR VECTOR SPACES: MODULE 2:

Inner product space, operators, expectation values of physical variables, bases, Dirac notation, eigen values and eigen vectors, commutation relations, Hilbert space.

6 Hours

10 Hours

12 Hours

MODULE 3: **ANGULAR MOMENTUM:**

Commutation relations, spin angular momentum, Pauli matrices, raising and lowering operators, Solution of harmonic oscillator using raising and lowering operators, L-S coupling, Total angular momentum, addition of angular momentum, Clebsch-Gordon coefficients.

MODULE 4: THREE DIMENSIONAL PROBLEMS:

Spherical harmonics, free particle in a spherical cavity, central potential, Three dimensional harmonic oscillator, degeneracy, Hydrogen atom.

MODULE 5: TIME INDEPENDENT PERTURBATION THEORY:

15 Hours Non-degenerate and Degenerate cases, Zeeman and Stark effects, induced electric dipole moment of Hydrogen; Real Hydrogen Atom: relativistic correction, spin-orbit coupling, hyperfine interaction, limitation of perturbation theory for Helium atom, Pauli's exclusion principle, exchange interaction. 45 Hours**

TOTAL LECTURES

Books:

1. R. Shankar, Principles of Quantum Mechanics, Springer (India) (2008).

2. J. J. Sakurai, Modern Quantum Mechanics, Pearson Education (2002).

3. K. Gottfried and T-M Yan, Quantum Mechanics: Fundamentals, 2nd Ed., Springer (2003).

4. D. J. Griffiths, Introduction to Quantum Mechanics, Pearson Education (2005).

5. P. W. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill(1995).

6. F. Schwabl, Quantum Mechanics, Narosa (1998).

7. L. Schiff, Quantum Mechanics, Mcgraw-Hill (1968).

8. E. Merzbacher, Quantum Mechanics, John Wiley (Asia) (1999).

9. B. H. Bransden and C. J. Joachain, Quantum Mechanics, Pearson Education 2nd Ed. (2004).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	3	2	-
CO-2	3	3	2	2	-	-	-	1	3	2	-
CO-3	3	3	3	2	-	-	-	1	3	3	-
CO-4	3	3	3	3	-	-	-	1	3	3	-
CO-5	3	3	3	3	-	-	-	1	3	3	-
CO-6	3	3	3	3	-	-	-	1	3	3	-
Average	3	3	2.67	2.50	0	0	0	1	3	2.67	0

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 1 st Sem.
Course Title: Electronics Laboratory	Subject Code: TIU-PPH-L115
Contact Hours/Week : 0–0–6 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Acquire knowledge of various types of electronic components, their functions, and how they operate within electronic systems.
- 2. Perform hands-on experiments to analyze and design digital electronic circuits, enhancing practical understanding and technical proficiency.
- 3. Gain experience in creating and implementing programs using microprocessors to control and automate electronic systems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Demonstrate the working principles of rectifiers, voltage regulators, and power supplies using semiconductor devices and ICs	К3
CO-2:	Analyze the characteristics and performance of BJTs and FETs in various configurations and amplifier circuits.	K4
CO-3:	Design and implement operational amplifier circuits, including adder, subtractor, differentiator, integrator, and active filters.	К5
CO-4:	Construct and test oscillator circuits, multivibrators, and timing circuits using NE555 and OP-AMPs	K5
CO-5:	Demonstrate and verify digital logic principles, including logic gates, De Morgan's theorem, adders, multiplexers, comparators, counters, and flip- flops.	K3
CO-6:	Develop and execute assembly language programs using the Intel 8085 microprocessor kit, including interfacing experiments.	КЗ

MODULE 1:	Wave Rectifiers	6 Hours

Construct half-	wave and full-wave rectifiers Circuits , conversion AC to DC,	efficiency ,output
waveforms, rip	ple factor, voltage smoothing.	
MODULE 2:	Zener Diode	6 Hours
Voltage regulat voltage or load	ion using Zener diodes, to maintain its stable output voltage despite va conditions.	ariations in input
MODULE 3:	Regulated Dual Voltage Power Supply	6 Hours
Construct dual	voltage power supply, functionality of dual voltage regulators,applicati	ons.
MODULE 4:	Bipolar Junction Transistor	6 Hours
Base (CB) and C	ut and output characteristics of a Bipolar Junction Transistor (BJT) in b Common Emitter (CE) configurations,behavior of BJTs in different oper ns in amplifier circuits.	
MODULE 5:	FET	6 Hours
Construction o response	f single-stage amplifier using a Field Effect Transistor (FET), voltage ga	in and frequency
MODULE 6:	OP-AMP Circuit	6 Hours
-	ild various operational amplifier circuits, such as adders, subtrac s, and integrators, as well as active filters.	tors,
MODULE 7:	Oscillators	6 Hours
	Colpitts and Wien bridge oscillators to generate sine wave signals , stability, generating RF and audio frequencies.	. frequency
MODULE 8:	Multivibrator using NE555	6 Hours
•	one-shot pulse) and astable (oscillating) multivibrators using the frequency oscillations etc	NE555 timer IC,
MODULE 9:	NOR/NAND Gates	6 Hours
	the universality of NOR and NAND, implement circuits using onl	y NOR or NAND
gates to realiz	e all basic logic operations.	
MODULE 10:	De Morgan's Theorem	6 Hours
Verification of	De Morgan's Theorem , applications in digital circuit design.	1
MODULE 11:	Adder	6 Hours
	1	L

Designing and	testing half adders and full adders, perform binary addition, arit	hmetic units in
digital comput	ers and other systems.	
MODULE 12:	Multiplexers and Demultiplexer	6 Hours
Multiplexers (systems.	MUX) and demultiplexers (DEMUX) function ,communication ,da	ta routing
MODULE 13:	Comparator and Mod-Counters	6 Hours
•	ges,count through a series of states. decision-making circuits and equential operations.	l digital
MODULE 14:	JK Flip-Flop	6 Hours
Analyze the be	havior of the JK flip-flop, a fundamental sequential logic circuit,to	oggling
between states	s based on its inputs and is used in memory ,timing applications.	
MODULE 15:	Microprocessor	6 Hours
	age programming using the INTEL 8085 microprocessor, along with in ng 8155/8255 ICs.	terfacing
TOTAL		90 Hours**

Books:

- 1. "Electronics: Principles and Applications" by Charles A. Schuler
- 2. "Digital Electronics: A Practical Approach with VHDL" by William Kleitz
- 3. "Digital Electronics" by Rakshit and Chattopadhyay
- 4. "The 8085 Microprocessor: Architecture, Programming, and Applications" by R.S. Gaonkar

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	2	2	1	-	1	-	1	1	-	3
CO-2	3	2	2	1	-	1	-	1	1	-	3
CO-3	3	3	3	2	-	1	-	1	1	-	3
CO-4	3	3	3	2	-	3	-	1	1	-	3
CO-5	3	3	3	2	-	1	-	1	1	-	3
CO-6	3	3	3	2	-	1	-	1	1	-	3
Average	3	2.67	2.67	1.67	0	1.33	0	1	1	0	3

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 1 st Sem.
Course Title: Computer Programming Lab (Through C/C++)	Subject Code: TIU-PPH-L111
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. Acquire a solid foundation in basic computer programming concepts and techniques.
- 2. Learn to design and write computer programs to solve a wide range of problems accurately and efficiently.
- 3. Develop skills to write precise and optimized code that addresses computational challenges effectively.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Learn about the C programming language and its applications in basic transformations, numerical operations, and so forth.	K4
CO-2:	Use programming language to carry out fundamental mathematical operations in the area of number system.	К3
CO-3:	Learn how to use C programming to execute algebraic operations	КЗ
CO-4:	Apply their knowledge to execute programmes on Mensuration.	КЗ
CO-5:	Solve a variety of equations in motion using C programming.	К3
CO-6:	Learn to perform various matrices operations.	K5

MODULE 1:	MODULE 1:Introduction to C Programming6 Hours						
Fahrenheit, ba	to C programming C programming, temperature conversion, Cels asic I/O, arithmetic operations, Gauss Elimination, forward elimi augmented matrix, system of linear equations						
MODULE 2:Sum and Average of Real Numbers6 Hours							
Sum, average,	real numbers, floating-point variables, arithmetic operations						

	Sum of Numbers	6 Hours
Even number	rs, odd numbers, loops, conditional statements, summation.	
MODULE 4:	Largest of Three Numbers Using Functions	6 Hours
Functions, ar	guments, return values, conditional statements	
MODULE 5:	Bubble Sort Technique for Ascending Order	6 Hours
Sorting, Bubb	ble Sort, ascending order, arrays, loops	
MODULE 6:	Matrix Addition	6 Hours
Matrices, addi	tion, 2D arrays, nested loops	
MODULE 7:	Matrix Multiplication	6 Hours
Matrices, mu multiplicatio	ltiplication, compatibility check, 2D arrays, checking the compatib n.	oility for
MODULE 8:	Roots of a Quadratic Equation Using Switch Statement	6 Hours
	Roots of a Quadratic Equation Using Switch Statement uation, roots, switch statement, decision-making	6 Hours
		6 Hours 6 Hours
Quadratic eq MODULE 9: Find the dist	uation, roots, switch statement, decision-making	6 Hours
Quadratic eq MODULE 9: Find the dist	uation, roots, switch statement, decision-making Programming application on Distance Travelled by a Vehicle ance(S) final velocity(v) travelled by a vehicle, given it's initial velocity	6 Hours
Quadratic eq MODULE 9: Find the dist acceleration MODULE 10: Programming	uation, roots, switch statement, decision-making Programming application on Distance Travelled by a Vehicle ance(S) final velocity(v) travelled by a vehicle, given it's initial vel 'a' and time 't' [use S = ut +(½)at², v = u + at, v² = u² + 2aS] Programming application on Volume Calculations of	6 Hours locity 'u', 6 Hours

Books:

1. Problem Solving and Program Design in C, 4th edition, by jeri R. Hanly and Elli B.Koffman. P.

V.P.Siddhartha Institute of Technology(Autonomous), I B.Tech. syllabus under PVP14 regulations

2. Programming in C by Pradip Dey, Manas Ghosh 2nd edition Oxford University Press.

- 3. E.Balaguruswamy, Programming in ANSI C 5th Edition McGraw-Hill
- 4. A first book of ANSI C by Gray J.Brosin 3rd edition Cengagedelmer Learning India P.Ltd

5 .AL Kelly, Iraphol, Programming in C,4th edition Addison-Wesley – Professional

6. Brain W.Kernighan & Dennis Ritchie, C Programming Language, 2nd edition, PH

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	3	2	-	2	-	1	-	-	3
CO-2	3	3	3	2	-	2	-	1	-	-	3
CO-3	3	3	3	2	-	2	-	1	-	-	3
СО-4	3	3	3	2	-	2	2	1	-	-	3
CO-5	3	3	3	2	-	2	2	1	-	-	3
CO-6	3	3	3	2	-	2	2	1	-	-	3
Average	3	3	3	2	0	2	2	1	0	0	3

SEMESTER II

Program: M. Sc. in Physics	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Numerical Method & Computational Technique	Subject Code: TIU-PPH-T102
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Introduce fundamental numerical methods for solving algebraic and transcendental equations, interpolation, differentiation, and integration.
- 2. Develop computational skills for implementing numerical algorithms and solving boundary value problems in scientific computing.
- 3. Apply numerical techniques in real-world physics and engineering problems, enhancing students' problem-solving and analytical abilities

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Define and explain the sources of errors, their propagation, and methods for error analysis, and understand the various root-finding methods.	K2
CO-2:	Apply linear equation-solving techniques and the least squares fitting method and analyze their efficiency in solving real-world problems. Additionally, they will apply power methods for eigenvalue problems.	K4
CO-3:	Apply interpolation methods to approximate functions and construct numerical differentiation formulas to solve problems involving function approximations.	КЗ
CO-4:	Apply various numerical integration methods for solving integrals, and evaluate their accuracy and efficiency in practical applications.	К3
CO-5:	Apply methods for solving initial value problems of ordinary differential equations (ODEs) and analyze their convergence and stability for different problem types.	K4
CO-6:	Find solutions for boundary value problems and evaluate their effectiveness in real-world applications. Additionally, students will use software tools like MATHEMATICA or PYTHON to implement numerical methods.	К3

MODULE 1:	ERRORS AND ROOTS OF FUNCTIONS	7 Hours
-----------	-------------------------------	---------

Errors: its sources, propagation and analysis;						
Roots of functions: bisection, Newton-Raphson, secant method, fixed-point iteration, applications						
MODULE 2: LINEAR EQUATIONS AND EIGENVALUE PROBLEMS	10 Hours					
Linear equations: Gauss and Gauss-Jordan elimination, Gauss-Seidel, LU decomposition	on;					
Eigenvalue Problem: power methods and its applications; Least square fitting of fur	nctions and its					
applications						
MODULE 3: INTERPOLATION	8 Hours					
Newton's and Chebyshev polynomials; Numerical differentiation: forward, backwar	d and centred					
difference formulae						
MODULE 4: NUMERICAL INTEGRATION	7 Hours					
Trapezoidal and Simpson's rule, Gauss-Legendre integration, applications, Erro	or Analysis in					
numerical integration						
MODULE 5: SOLUTIONS OF ODE	7 Hours					
Initial value problems, Euler's method, second and fourth order Runge-Kutta method	ds, Application					
in solving ordinary differential equations						
MODULE 6: BOUNDARY VALUE PROBLEM	6 Hours					
Finite difference method, applications. Application using MATHEMATICA or PYTHON						
TOTAL LECTURES	45 Hours**					

Books:

1. K. E. Atkinson, Numerical Analysis, John Wiley (Asia) (2004).

2. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill (2002).

3. J. D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd ed. CRC Press, Special Indian reprint (2010).

4. J. H. Mathews, Numerical Methods for Mathematics, Science, and Engineering, PrenticeHall of India (1998).

5. S. S. M. Wong, Computational Methods in Physics, World Scientific (1992).

6. W. H. Press, S. A. Teukolsky, W. T. Verlling and B. P. Flannery, Numerical Recipes in C,Cambridge (1998).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	2	2	-
CO-2	3	3	2	2	-	-	-	1	2	2	-
CO-3	3	3	2	2	-	-	-	1	2	2	-
СО-4	3	3	2	2	-	-	-	1	2	2	-
CO-5	3	3	2	2	-	-	-	1	2	2	-
CO-6	3	3	2	3	-	-	-	1	2	2	2
Average	3	3	2	2.17	0	0	0	1	2	2	2

Program: M. Sc. in Physics	Year, Semester: 1st Yr., 2nd Sem.				
Course Title: Electrodynamics	Subject Code: TIU-PPH-T104				
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4				

COURSE OBJECTIVE:

Enable the student to:

- 1. Illustrate the evaluation of fields and forces in electrodynamics and magnetodynamics using fundamental scientific methods.
- 2. Develop a deep understanding of relativistic electrodynamics and its theoretical foundations.
- 3. Explore the applications of electrodynamics in various branches of physical sciences.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Demonstrate a strong understanding of electrostatics, magnetostatics and Maxwell's equations for time-varying fields.	К3
CO-2:	Analyze wave propagation in different media and apply reflection/refraction principles using Fresnel equations and Group Velocity Dispersion (GVD).	K4
CO-3:	Examine surface waves, waveguides, resonant cavities, and antennas, and evaluate their applications in communication and scattering phenomena.	K4
CO-4:	Understand and apply the concepts of different electromagnetic potentials and accelerated charges and physical phenomena observed in plasma.	КЗ
CO-5:	Comprehend the fundamentals of special relativity and apply the relativistic electrodynamics.	К3
CO-6:	Understand the principles of quantum electrodynamics, including photon states, Feynman diagrams, and radiative corrections in scattering processes.	КЗ

COURSE CONTENT:

MODULE 1:	MAXWELL'S EQUATIONS, AND WAVE PROPAGATION	10 Hours
Review of elec	trostatics and magnetostatics boundary value problems using Laplac	ce's equation.
Maxwell's equ	ations for time varying fields, polarization and conductivity, pla	ne waves in
dielectrics and	l conductors, reflection/refraction, critical reflection, Fresnel Equ	ation, Group
Velocity Disper	sion (GVD)	-
velocity Disper		

MODULE 2: WAVEGUIDES, TRANSMISSION LINES, AND ANTENNAS 8 Hours

Surface waves and medium frequency communication, Fieldsat the surface of and within a
Conductor; Cylindrical Cavities and Wave Guides, Resonant Cavities, Power losses in a Cavity and Q
of a Cavity, transmission lines, dipole antenna, antenna array, Rayleigh scattering.

MODULE 3: RADIATION THEORY

8 Hours

5 Hours

Scalar and vector potentials, Coulomb gauge and Lorentz gauge, Gauge transformations, Lienard-Wiechert potentials, Radiation from accelerated charges, Applications to communication and radar, Total power Radiated by an Accelerating charge, Larmor's formula.

MODULE 4: PLASMA

Interaction of electromagnetic wave with plasma, Concept about plasma equilibrium, Wave propagation in plasmas.

MODULE 5:	SPECIAL RELATIVITY AND RELATIVISTIC ELECTRODYNAMICS	8 Hours
Postulates of	special relativity, Lorentz transformations, Minkowski Space and	Four vectors,
Concepts of I	Four velocity, Four-momentum , Four Acceleration, mass-energy	equivalence,
relativistic cov	ariance of Maxwell's equations. Relativistic formation of electrodynamic	ics.

MODULE 6: QUANTUM ELECTRODYNAMICS	6 Hours
Quantization of the electromagnetic field, Photon states and Fock space, Feynman D	iagrams: Basic
rules and applications, Scattering processes and cross-sections, Radiative Correc	tions: Vacuum
polarization, Lamb shift and anomalous magnetic moment.	

TOTAL LECTURES

45 Hours**

Books:

1. J. D. Jackson, Classical Electrodynamics, John Wiley (Asia) (2011).

2. Griffiths, D.J., (2012), Introduction to Electrodynamics, PHI Learning

3. H. J. W. Muller Kirsten, Electrodynamics, World Scientific (2011).

4. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice Hall (1995).

5. J. Schwinger et al., Classical Electrodynamics, Persesus Books (1998).

6. G. S. Smith, Classical Electromagnetic Radiation, Cambridge (1997).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	-	-	-	-	-	-	3	2	-
CO-2	2	3	-	-	-	-	-	-	3	3	-
СО-3	3	2	2	-	-	-	-	-	2	3	-
СО-4	3	3	-	2	-	-	-	-	2	3	-
CO-5	3	2	-	-	-	-	-	-	2	3	-
СО-6	3	3	-	-	-	-	-	-	3	3	-
Average	2.83	2.67	2	2	0	0	0	0	2.50	2.83	0

Program: M. Sc. in Physics	Year, Semester: 1st Yr., 2nd Sem.				
Course Title: Quantum Mechanics-II	Subject Code: TIU-PPH-T108				
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3				

COURSE OBJECTIVE :

Enable the student to:

- 1. To develop an understanding of the Schrödinger equation in the presence of a slowly varying potential and its implications in quantum mechanics.
- 2. To explore and apply the variational method and perturbation theory to solve complex quantum mechanical problems.
- 3. To introduce fundamental concepts of scattering theory and radiation theory, emphasizing their applications in modern physics.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recall the formalism of Schrödinger's equation for a slowly varying potential and the WKB approximation, including the turning points and connection formulae.	K1
CO-2:	Understand the variational method, including trial wave functions, and explain its applications to solving simple potential problems in quantum mechanics.	К2
CO-3:	Explain time-dependent perturbation theory, sinusoidal perturbations, and apply Fermi's Golden Rule to various potential fields.	K2
CO-4:	Apply the semi-classical treatment of radiation theory, including Einstein's coefficients, to explain spontaneous and stimulated emission and absorption, and their applications in lasers.	К3
CO-5:	Apply scattering theory, including the Born approximation and Green's functions, to calculate scattering cross-sections and analyze scattering in different potential fields.	КЗ
CO-6:	Analyze the Lorentz invariance and derive the Klein-Gordon and Dirac equations for free particles, understanding their significance in relativistic quantum mechanics.	K4

MODULE 1: SCHRODINGER EQUATION FOR A SLOWLY VARYING POTENTIAL:									9 Hours
WKB approximation, turning points, connection formulae, derivation of Bohn								ohr-Sommerfeld	
qua	quantization condition, applications of WKB.								

MODULE 2:	VARIATIONAL METHOD:

trial wave function, applications to simple potential problems.

MODULE 3: TIME DEPENDENT PERTURBATION THEORY:

10 Hours

8 Hours

Sinusoidal perturbation, Fermi's Golden Rule; Special topics in radiation theory: semi-classical treatment of interaction of radiation with matter, Einstein's coefficients, spontaneous and stimulated emission and absorption, application to lasers.

MODULE 4:	SCATTERING THEORY:	10 Hours
Born approxim	nation, scattering cross section, Greens functions, scattering for diffe	erent kinds of
potentials, app	lications.	

MODULE 5:	RELATIVISTIC QUANTUM MECHANICS:	8 Hours
Lorentz invaria		
TOTAL LECTU	RES	45 Hours**

Books:

- 1. B. H. Bransden and C. J. Joachain, Quantum Mechanics, Pearson Education 2nd Ed. (2004).
- 2. R. L. Liboff, Introductory Quantum Mechanics, Pearson Education, 4th Ed. (2003).
- 3. P. W. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1995).
- 4. F. Schwabl, Quantum Mechanics, Narosa (1998).
- 5. L. I. Schiff, Quantum Mechanics, McGraw Hill (1968).
- 6. J. J. Sakurai, Modern Quantum Mechanics, Pearson Education (2002).
- 7. R. Shankar, Principles of Quantum Mechanics, Springer; 2nd edition (1994).

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	2	2	-	-	-	-	3	2	-
CO2	3	3	3	2	-	-	-	-	3	2	-
CO3	3	3	2	2	-	-	-	-	3	2	-
CO4	3	3	3	3	-	-	-	-	2	3	-
CO5	3	3	3	3	-	-	-	-	3	3	-
CO6	3	3	3	3	-	-	_	-	2	3	-
Average	3	3	2.67	2.50	0	0	0	0	2.67	2.50	0

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 2 nd Sem.
Course Title: Solid State Physics	Subject Code: TIU-PPH-T112
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop a thorough understanding of fundamental solid-state physics concepts.
- 2. Learn crucial theoretical principles that govern solid-state systems.
- 3. Gain exposure to essential experimental techniques for a well-rounded understanding of the subject.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand crystal structures, symmetry operations, diffraction principles, and reciprocal lattices.	K2			
CO-2:	Analyze lattice dynamics, vibrational models, and phonon-related phenomena in solids.	K4			
CO-3:	Apply free-electron theory to explain the electrical, thermal, and transport properties of metals.	K3			
CO-4:	Explain the formation of energy bands, Bloch's theorem, and solid-state electronic properties.				
CO-5:	Analyze semiconductor properties, charge carrier mechanisms, and electronic transport.	K4			
CO-6:	Explain the fundamental principles of magnetic resonance and superconductivity.	K2			

COURSE CONTENT :

MODULE 1: CRYSTAL STRUCTURE	8 Hours							
Diffraction of waves by crystals: Bragg's law of X-ray diffraction, Symmetry operations and								
classification of Bravais lattices, common crystal structures, reciprocal lattice, Brillo	ouin zone, Von							
Laue's formulation, diffraction from non-crystalline systems. Geometrical factors of	f SC, FCC, BCC							
and diamond lattices.								
MODULE 2: LATTICE DYNAMICS	8 Hours							

Failure of the static lattice model, vibrations of linear monoatomic and diatomic lattice, quantization of lattice vibrations, Einstein and Debye theories of specific heat, phonon density of states, neutron scattering.

MODULE 3:	FREE ELECTRON THEORY OF METALS	6 Hours					
	DC conductivity, magneto-resistance, thermal conductivity, thermoe stribution, thermal properties of an electron gas, WiedemannFranz la nodel.						
MODULE 4:	BAND THEORY OF SOLIDS	8 Hours					
solution near a	Wave functions in a periodic lattice and the Bloch theorem, The Kronig-Penny model , Approximate solution near a zone boundary and band gap, the tight binding approximation, cyclotron resonance, the De-Haas Van Alphben effect. Fermi surface and Brillouin zones.						
MODULE 5:	SEMICONDUCTORS	4 Hours					
	rties and band structure, carrier statistics, impurities, intrinsic s, drift and diffusion currents, mobility, Hall effect.	and extrinsic					
MODULE 6:	MAGNETIC RESONANCES	6 Hours					
transverse rel	Nuclear magnetic resonances, Paramagnetic resonance, Bloch equation, Longitudinal and transverse relaxation time; Spin echo; Motional narrowing in line width; Absorption and dispersion; Hyperfine field; Electron-spin resonance.						
MODULE 7:	SUPERCONDUCTORS	5 Hours					
-	y, review of basic properties, thermodynamics of superconduct leissner effect, Type-I and Type-II superconductors, BCS theory of sup						
TOTAL LECTU		45 Hours					

Books:

- 1. Introduction to Solid State Physics, C. Kittel, 8th ed; John Wiley & Sons (2005).
- 2. Solid State Physics, J. D. Patterson and B.C. Bailey; Springer (2007).
- 3. Solid State Physics, A. J. Dekker; Prentice Hall
- 4. Solid State Physics, N. W. Ashcroft and N. D. Mermin; Harcourt Asia Pte. Ltd. (2001).
- 5. Solid State Physics, M. S. Rogalski and S. B. Palmer; Gordon and Breach Science Publishers (2001).
- 6. Solid State Physics, R.L. Singhal and P.A. Alvi; Kedar Nath Ram Nath

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	3	2	1
CO2	3	3	2	1	-	-	-	-	3	2	1
CO3	3	2	2	1	-	-	-	1	3	3	2
CO4	3	2	1	1	-	-	-	-	3	2	1
CO5	3	3	2	2	-	-	-	1	3	3	2
CO6	3	2	1	1	-	-	-	-	3	3	1
Average	3	2.33	1.50	1.17	0	0	0	1	3	2.50	1.33

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Atomic and Molecular Physics	Subject Code: TIU-PPH-T116
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. To develop a detailed understanding of the structure, properties, and interactions of oneelectron, two-electron, and many-electron atoms.
- 2. To explore the fundamentals of molecular structure, bonding, and the interaction of molecules with electromagnetic fields.
- 3. To understand various spectroscopic techniques with the aim of correlating it with advanced experimental analysis.
- 4. To introduce students to various spectroscopic techniques and modern advancements such as Bose-Einstein condensates, laser cooling and magneto-optical traps.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Apply the spectrum of hydrogen, helium and alkali atoms to problems in structural elucidation in matter	К3
CO-2:	Recognize the central field approximations and also the coupling of angular momentum	K2
CO-3:	Investigate and devise the interaction of the spectral line under the presence of the electromagnetic fields	K4
CO-4:	Construct and apply various spectroscopic techniques	К3
CO-5:	Interpret and Utilize the processes behind laser cooling and trapping of atoms and understand simple optical trapping systems and magneto optical traps	K3
CO-6:	Illustrate the fundamental processes in operation of LASERS	К3

MODULE 1: REVIEW OF ONE-ELECTRON AND TWO-ELECTRON ATOMS						
Excited state of hydrogen, wave function and energy levels of helium and alkali atoms.						
MODULE 2:	MANY ELECTRON ATOMS	6 Hours				

Central field approximation, Thomas-Fermi model, Slater determinant, Hartee-Fock and selfconsistent field methods, Hund's rule, L-S and j-j coupling, Equivalent and nonequivalent electrons, Spectroscopic terms, Lande interval rule

INTERACTION WITH ELECTROMAGNETIC FIELDS MODULE 3:

Zeeman, Paschen Back and Stark effects, Hyperfine structure and isotope shift, selection rules, Lamb shift

MOLECULAR SPECTRA MODULE 4:

Rotational, vibrational, electronic, Raman and Infra-red spectra of diatomic molecules, electronic and nuclear spin, Hund's rule, Frank-Condon principle and selection rules.

MOLECULAR STRUCTURE MODULE 5:

Molecular potential, Born-Oppenheimer approximation, diatomic molecules, electronic angular momenta, Approximation methods, linear combination of atomic orbitals (LCAO) approach, states for hydrogen molecular ion, shapes and term symbols for simple molecules

MODULE 6: SPECTROSCOPIC TECHNIQUES

Basic principles of microwave, infrared, Raman, NMR, ESR and Mossbauer spectroscopies

MODULE 7: LASER SPECTROSCOPY

Spontaneous and Stimulated emission, Einstein's A-B coefficients, Optical Pumping, Population Inversion, Rate equation, modes of resonator and coherence length, Semiconductor Laser, He-Ne Laser.

MODULE 8 **MODERN DEVELOPMENTS**

Qualitative idea of Optical cooling and trapping of atoms, molecular spectroscopy in a magnetooptical trap, time resolved spectroscopy in the femto second regime **TOTAL LECTURES** 45 Hours**

Books:

- 1. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd Ed. Pearson (2008).
- 2. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw (2004).
- 3. G. K. Woodgate, Elementary Atomic Structure, Clarendon Press (1989).
- 4. I. N. Levine, Quantum Chemistry, PHI (2009).
- 5. F. L. Pilar, Elementary Quantum Chemistry, McGraw Hill (1990).
- 6. H. E. White, Introduction to Atomic Spectra, Tata McGraw Hill (1934).
- 7. W. Demtroder, Atoms, Molecules and Photons, 2nd Ed., Springer (2010).
- 8. C. J. Foot, Atomic Physics, Oxford (2005).

5 Hours

6 Hours

4 Hours

5 Hours

6 Hours

10 Hours

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	1	-	-	-	-	3	2	-
CO2	3	3	3	2	-	-	-	-	3	3	-
CO3	3	2	-	2	-	-	-	-	3	2	3
CO4	3	3	3	3	-	-	-	2	3	3	3
CO5	3	3	3	3	-	-	-	2	3	3	3
CO6	3	2	-	2	-	-	-	-	3	3	3
Average	3	2.67	3	2.17	0	0	0	2	3	2.67	3

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 2nd Sem.
Course Title: : Numerical Methods and Programming Lab	Subject Code: TIU-PPH-L102
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop a comprehensive understanding of advanced mathematical calculations and their applications.
- 2. Acquire practical skills in using C programming tools to perform complex mathematical operations and problem-solving.
- 3. Implement algorithms in C to achieve accurate and efficient mathematical solutions.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Learn multiple programming methodologies for identifying function roots and numerically solving various sets of linear equations.	K1
CO-2:	Discover the least squares fitting strategy for any function and learn how to address eigen value problems.	КЗ
CO-3:	Able to solve various interpolation difficulties	K2
CO-4:	Use computation programming to tackle a range of numerical differentiation and integration problems.	КЗ
110-51	Learn how to solve various boundary value issues, as well as how to solve differential equations	КЗ
CO-6:	Able to apply their knowledge of differential equations and mathematical techniques to solve various initial value problems using different methods, including analytical, numerical, and approximation techniques, to effectively model and solve real-world scenarios.	К5

MODULE 1:	Experiment:1	8 Hours			
To find the Roots of Functions by Bisection method ;					
To find the Roo	To find the Roots of Functions by Newton-Raphson method;				
To find the Roots of Functions by Secant method					
Γο find the Roots of Functions by fixed-point iteration					
MODULE 2:	Experiment:2	8 Hours			

To find the solution of different set of linear equations by Gauss and Gauss-Jordan elimination						
method						
To find the solution of different set of linear equations by Gauss-Seidel method						
To find the solution of different set of linear equations by LU decomposition method	I					
MODULE 3: Experiment:3	8 Hours					
To solve various eigen value problems by power methods						
To solve various eigen value problems by Least square fitting method						
MODULE 4: Experiment:4	8 Hours					
To solve Newton's and Chebyshev polynomials						
To solve numerical differentiation by forward, Backward and centered difference for	mulae;					
MODULE 5: Experiment:5	8 Hours					
To solve numerical integration by Trapezoidal						
To solve numerical integration by Simpson's rule						
To solve numerical integration by Gauss-Legendre integration.						
MODULE 6: Experiment:6	8 Hours					
To find Solutions of ODE of Initial value problems by Euler's method						
To find Solutions of ODE of Initial value problems by Second and fourth order Runge	-Kutta					
methods						
To find Boundary Value Problems by Finite difference methods						
MODULE 7: Experiment:7 8 Hours						
Application using Mathematica						
TOTAL HOURS	56 Hours**					

Books:

1.K. E. Atkinson, Numerical Analysis, Jhon Wiley (Asia) (2004).

2.S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill (2002).

3. J. D. Hoffman, Numerical methods for Engineering and Scientists, 2nd ed. CRC Press, Special Indian reprint (2010)

4.J. H. Mathews, Numerical Methods for Mathematics, Science and engineering, PrenticeHall of India (1998).

5. S. S. M. Wong, Computational Methods in Physics, World Scientific (1992).

6. W. H. Press, S. A. Teukolsky, W. T. Verlling and B. P. Flannery, Numerical Recipes in C, Cambridge (1998).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	3	-	-	1	-	1	-	1	3
CO-2	3	3	3	-	-	1	-	1	-	1	3
CO-3	3	3	3	-	-	1	-	1	-	1	3
CO-4	3	3	3	-	-	1	-	1	-	1	3
CO-5	3	3	3	-	-	1	-	1	-	1	3
CO-6	3	3	3	-	-	1	-	1	-	1	3
Average	3	3	3	0	0	1	0	1	0	1	3

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 2 nd Sem.
Course Title: General Physics Laboratory I	Subject Code: TIU-PPH-L112
Contact Hours/Week: 0-0-6 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Gain hands-on experience with advanced experimental techniques in condensed matter physics and semiconductor physics.
- 2. Acquire theoretical and practical knowledge of magnetic, electrical, and optical properties of materials through precise experimentation.
- 3. Develop the ability to critically analyze data, compare with theoretical predictions, and draw meaningful conclusions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Demonstrate the ability to measure and analyze the magnetic susceptibility of solids and study magnetic hysteresis characteristics.	К3			
CO-2:	Analyze the interference patterns and determine physical parameters using the Michelson interferometer				
CO-3:	Investigate semiconductor properties by measuring electrical resistivity and examining temperature-dependent characteristics of p-n junctions.	K4			
CO-4:	Study advanced quantum phenomena and fundamental constants through experiments like the Frank-Hertz experiment and measurement of e/m by magnetron valve	К5			
CO-5:	Examine the temperature variation of refractive index in liquids using laser sources and study the dispersion relation in monoatomic and diatomic lattices	K4			
CO-6:	Determine magnetoresistance and Curie temperature to understand magnetic and electronic material properties.	K4			

MODULE 1:	MODULE 1: Magnetic Susceptibility of a Solid					
Magnetic susceptibility, paramagnetic, diamagnetic, ferromagnetic materials, Gouy's						
magnetic field, mass susceptibility, volume susceptibility.						
MODULE 2:	Michelson Interferometer		9 Hours			

Michelson interferometer, interference pattern, wavelength, refractive index, path difference,	
coherence, fringe shift.	

MODULE 3: Frank-Hertz Experiment

9 Hours

9 Hours

6 Hours

Frank-Hertz experiment, electron excitation, energy levels, inelastic collisions, quantum theory, mercury vapor, excitation spectrum.

MODULE 4:Electrical Resistivity of Semiconductors9 HoursElectrical resistivity, semiconductors, temperature dependence, conductivity, intrinsic and extrinsic
semiconductors, band gap, activation energy.9 Hours

MODULE 5: Magnetic Hysteresis

Magnetic hysteresis, magnetization curve, ferromagnetic materials, coercivity, remanence, magnetic domains, hysteresis loop.

MODULE 6:Temperature Dependent Characteristics of P-N Junction9 HoursP-N junction, temperature dependence, forward bias, reverse bias, diode characteristics, band gap,
thermionic emission.9 Hours

MODULE 7:Dispersion Relation for Monoatomic and Diatomic Lattice9 HoursDispersion relation, monoatomic lattice, diatomic lattice, phonon, acoustic branch, optical branch,
lattice vibrations, Brillouin zone.9 Hours

MODULE 8:Temperature Variation of Refractive Index of a Liquid9 HoursRefractive index, temperature dependence, hollow prism, laser light, total internal reflection,Brewster's angle, refractive index measurement.

MODULE 9: Magnetoresistance of the Given Material

6 Hours

Magnetoresistance, resistivity, magnetic field, Hall effect, conduction electrons, resistance variation, external magnetic field.

MODULE 10: Determination of Curie Temperature

Curie temperature, ferromagnetic transition, magnetic susceptibility, temperature dependence, paramagnetic-to-ferromagnetic transition.

MODULE 11:Measurement of e/m by Magnetron Valve6 Hours

e/m ratio, magnetron valve, charge-to-mass ratio, electron trajectory, magnetic field, velocity selector, circular motion of electrons.

TOTAL	(Any 8 experiments)	90 Hours**

Books:

- 1. R. A. Dunlop, Experimental Physics, Oxford University Press (1998)
- 2. A. Lipson, S. G. Lipson, H. Lipson, Optical Physics, Cambridge University Press; 4th (2010)
- 3. E. Hecht, Optics, Addition-Wesley; 4th Edition (2001)
- 4. Laboratory Manual with details about the experiments

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	2	-	-	1	-	1	3	2	3
CO-2	3	3	2	-	-	1	-	1	3	2	3
CO-3	3	2	2	-	-	1	-	1	3	3	3
CO-4	3	3	2	-	-	1	-	1	2	2	3
CO-5	3	2	3	-	-	1	-	1	3	2	3
CO-6	3	3	2	-	-	1	-	1	3	3	3
Average	3	2.67	2.17	0	0	1	0	1	2.83	2.33	3

SEMESTER III

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.		
Course Title: Nuclear Physics	Subject Code: TIU-PPH-T215		
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4		

COURSE OBJECTIVE :

Enable the student to:

- 1. Provide a comprehensive understanding of nuclear properties and nuclear reactions, covering fundamental concepts such as nuclear size, binding energy, and angular momentum.
- 2. Explore nuclear models and examine the practical aspects of nuclear reactions, including reaction mechanisms, Q-values, and experimental observables.
- 3. Apply theoretical knowledge to analyze and solve problems related to nuclear properties, decay processes, and reactions, with a focus on their real-world applications in nuclear physics.

COURSE OUTCOME :

On completion of the course, the student will be able to:

	pretion of the course, the student will be use to.				
CO-1:	Define basic nuclear properties such as nuclear size, charge distribution, mass, binding energy, angular momentum, spin, parity, symmetry, and the magnetic dipole and electric quadrupole moments.	K1			
CO-2:	Understand the nature of nuclear forces, including charge independence, charge	K2			
00 2.	symmetry, and isospin invariance.				
	Solve the Schrödinger equation for the ground state of the deuteron, including				
CO-3:	determining the RMS radius and interpret the properties of the deuteron.	КЗ			
	Understand the role of tensor forces.				
CO 4	Analyze various types of radioactive decay (alpha, beta, gamma) compare	17.4			
CO-4:	different decay processes and their implications in nuclear physics.	K4			
CO 5	Understand different nuclear models, such as the Liquid Drop Model, Bethe-	1/2			
CO-5:	Weizsäcker mass formula, Shell Model, and Collective Model.	К2			
	Apply concepts of nuclear reactions to calculate Q-values, explain energy and				
aa c	time scales for direct and compound reactions, and interpret experimental				
CO-6:	observables such as cross-sections, angular distributions, and excitation	K4			
	functions.				

COURSE CONTENT :

MODULE 1:	NUCLEAR PROPERTIES	10 Hours		
Basic nuclear properties: nuclear size, nuclear radius and charge distribution, nuclear form factor,				
mass and bind	ing energy, Angular momentum, spin, parity and symmetry, Magnetic d	ipole moment		
and electric qu	adrupole moment, Nature of nuclear forces: charge independence, cha	rge symmetry		
and isospin inv	variance of nuclear forces.			
MODULE 2:	TWO-BODY BOUND STATE	6 Hours		
Properties of a	deuteron, Schrodinger equation and its solution for ground state of	deuteron, rms		
radius, spin de	pendence of nuclear forces, electromagnetic moment and magnetic d	ipole moment		
of deuteron an	d the necessity of tensor forces.			
MODULE 3:	RADIOACTIVITY AND NUCLEAR DECAY	8 Hours		
Radioactivity,	successive nuclear disintegration, alpha decay, beta decay, gamma deca	y.		
MODULE 4:	NUCLEAR MODELS	9 Hours		
Liquid drop me	odel, Bethe-Weizsacker mass formula, Shell model and Collective mode	l.		
MODULE 5:	NUCLEAR REACTIONS	12 Hours		
Types of reactions and Q-values, Reaction mechanisms: Energy and time scales for direct and				
compound reactions, center of mass frame and laboratory frame, Experimental observables: Cross				
sections - definitions and units; Angular distributions, Excitation functions, Partial wave analysis				
and phase shift	-	-		
TOTAL LECTURES 45 Hours**				

Books:

1. K. S. Krane, Introductory Nuclear Physics, John Wiley (1988).

2. R. R. Roy and B. P. Nigam, Nuclear Physics: Theory and Experiment, New Age (1967).

3. A. Das and T. Ferbel, Introduction to nuclear and particle physics, John Wiley (1994).

4. M. A. Preston and R. K. Bhaduri, Structure of the nucleus, Addison-Wesley (1975).

5. I. S. Hughes, Elementary Particles, Cambridge (1991).

6. F. Halzen and A. D. Martin, Quarks and Leptons, John Wiley (1984).

7. D. Perkins, Introduction to High Energy Pysics, Cambridge University Press; 4th edition (2000).

CO-PO Mapping

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	3	2	1
CO-2	3	3	2	2	-	-	-	1	3	2	1
CO-3	3	3	2	2	-	-	-	1	3	2	1
CO-4	3	3	2	2	-	-	-	1	3	2	1
CO-5	3	3	2	2	-	-	-	1	3	2	1
CO-6	3	3	2	2	-	-	-	1	3	2	1
Average	3	3	2	2	0	0	0	1	3	2	1

Program: M.Sc. in Physics	Year, Semester: 2 nd Yr.,3 rd Sem.		
Course Title: Statistical Mechanics	Subject Code: TIU-PPH-T217		
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4		

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop the ability to analyze and explain thermodynamic systems from a statistical mechanics perspective.
- 2. Understand the connection between the microscopic behavior of a system and its macroscopic properties..
- 3. Explore the necessity of statistical mechanics and study classical and quantum theories for describing thermodynamic systems effectively

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamental concepts of statistical mechanics, including macroscopic and microscopic states.				
CO-2:	Apply ensemble theory to describe thermodynamic systems and their				
00-2.	fluctuations.	К3			
CO-3:	: Analyze the properties of quantum statistical systems and quantum gases. K4				
CO-4:	Explain the behavior of Bose-Einstein condensation, blackbody radiation,	К2			
00-4:	and phonons.	K2			
CO-5:	Apply statistical models to interacting systems and solve the Ising model	1/2			
0-5:	using transfer matrix methods.	K3			
60.6	Describe the thermodynamic properties of systems using different statistical	K2			
CO-6:	ensembles.	KΖ			

COURSE CONTENT :

MODULE 1:	FUNDAMENTAL OF STATISTICAL MECHANICS	12 Hours				
Statistical description: macroscopic and microscopic states for classical and quantum systems,						
connection between statistics and thermodynamics, entropy, classical ideal gas, entropy of mixing						
and Gibb's paradox.						

MODULE 2: ENSEMBLE THEORY AND APPLICATIONS	14 Hours
--	----------

Microcanonical Ensemble: Phase space, Liouville's theorem, applications of ensemble theory to classical and quantum systems; Canonical Ensemble: partition function, thermodynamics in canonical ensemble, classical systems, ideal gas, energy fluctuation, equipartition and Virial theorem, system of harmonic oscillators, statistics of paramagnetism, negative temperature; Grand Canonical Ensemble: equilibrium between a system and a particle-energy reservoir, partition function, density and energy fluctuation.

,							
MODULE 3:	QUANTUM STATISTICAL MECHANICS	12 Hours					
Formulation of Quantum Statistics: Quantum mechanical ensemble theory, density matrix statistics of various ensembles, examples; Theory of quantum ideal gases: Ideal gas in differen quantum mechanical ensembles, identical particles, many particle wave function, occupation numbers, classical limit of quantum statistics, molecules with internal motion; Ideal Bose Gas Bose-Einstein condensation, blackbody radiation, phonons, Helium II;							
MODULE 4:	INTERACTING SYSTEMS AND MODELS	7 Hours					
Interacting Sys	Interacting Systems: Models of interacting systems, Ising, Heisenberg and XY models, Solution of						
Ising model in	Ising model in one dimension by transfer matrix method.						
TOTAL LECTU	45 Hours						

Books:

- 1. R. K. Pathria and P. D. Beale, Statistical Mechanics, 3rd ed. Butterworth-Heinemann (2011).
- 2. S. R. A. Salinas, Introduction to Statistical Physics, Springer (2004).
- 3. W. Greiner, L Neise, and H. Stocker, Thermodynamics and Statistical Mechanics, Springer (1994).
- 4. K. Huang, Statistical Mechanics, John Wiley Asia (2000).
- 5. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon (1980).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	3	3	1
CO-2	3	3	3	2	-	-	-	1	3	3	1
CO-3	3	3	3	3	-	-	-	1	3	3	1
CO-4	3	3	2	2	-	-	-	1	3	3	1
CO-5	3	3	3	3	-	-	-	1	3	3	1
CO-6	3	3	3	3	-	-	-	1	3	3	1
Average	3	3	2.67	2.50	0	0	0	1	3	3	1

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Material Physics I	Subject Code: TIU-PPH-T219
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Provide a comprehensive understanding of material science, including classification, preparation, and characterization of materials.
- 2. Explore the fundamental properties of semiconductors, nanomaterials, and carbon nanotechnology, and their applications in technology.
- 3. Develop the ability to analyze and apply material properties, structures, and phases in various technological contexts using modern characterization techniques.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Understand the basic concepts of material science, including the	K2						
	classification and applications of materials in technology.							
	Demonstrate the ability to prepare and characterize materials using various							
CO-2:		K4						
	techniques							
CO-3:	Analyze the atomic structure, interatomic bonding, and the thermodynamics	К4						
CO-3:	of solutions and phase diagrams in materials.							
	Understand and apply the principles of semiconductor materials, carrier							
		К3						
CO-4:	transport, and the effects of temperature, doping, and recombination							
	processes.							
	Explore the properties and applications of nanomaterials in electronics,	К3						
CO-5:	medicine, and energy, and understand the quantum effects in low-							
	dimensional systems.							
CO-6:	Examine the geometry, properties, and applications of nanoscale carbon	КЗ						
LU-6:	materials such as fullerenes, carbon nanotubes, and graphene							
L								

COURSE CONTENT:

MODULE 1:	INTRODUCTION TO MATERIAL PHYSICS	5 Hours					
Overview of material science and engineering, Classification of materials (metals, ceramics,							
polymers, con	polymers, composites), Importance and applications of materials in technology.						

and electron evaporation technique, Sputtering, CVD, Melt and quenching,							
Characterization of material by XRD, thermal methods (DSC, DTA), Optical met							
Raman), Microscopic (SEM, TEM, STEM, AFM etc.).Mechanical and electrical methods. Non-							
destructive testing, introductory ideas of liquid crystal.							
MODULE 3: STRUCTURE OF MATERIALS AND PHASES	6 Hours						
Atomic structure and interatomic bonding, Structure of crystalline solids, stru	ucture of non-						
crystalline solids (SRO and MRO); Radial distribution function, Solid solutions.							
Thermodynamics of solutions, Phase rule, Binary phase diagrams, Binary isomorphic	phous systems,						
Binary eutectic systems, ternary phase diagrams, kinetics of solid state reactions.							
MODULE 4: PHYSICS OF SEMICONDUCTORS	10 Hours						
Semiconductor materials - elemental & compound semiconductors & their proper	ties Intrinsic &						
extrinsic semiconductors. Degenerate & compound semiconductors. Direct & indirect band gap							
semiconductors. Variation of energy bands for gr III- V ternary, quaternary all	oys with alloy						
composition Concepts of Fermi level, Drift & Diffusion of carrier conductivity & mo	obility. Effect of						

Preparation of materials by different techniques: Bulk crystal growth, Epitaxial growth, Thermal

MATERIAL PREPARATION AND CHARACTERIZATION

12 Hours

Excess carriers in semiconductors - low & high level injection, Generation & recombination process, Direct & indirect recombination, Concept of 'quasi' Fermi level.

Basic equation for semiconductor device operations. Continuity equation, Current flow equation, Carrier transport equation, etc. Excess Carrier distribution in steady state, Minority Carrier life time & Diffusion length.

Introduction to nanomaterials, Applications in electronics, medicine, and energy, elect	ronic				
	,101110				
properties of low dimensional systems, Quantum effects in low-dimensional systems,					
Environmental and health impacts of nanomaterials.					

MODULE 6:	Carbon Nanotechnology	4 Hours				
Geometry of applications.	nanoscale carbon, fullerenes, carbon nanotubes,	graphene, and their				
TOTAL LECTU	TOTAL LECTURES					

Books:

MODULE 2:

1. Materials Science and Engineering An Introduction, William D. Callister, Jr., John Wiley & Sons, Inc.

2. The Physics of Semiconductors, Marius Grundmann, Springer

Temperature and Doping. Hall Effect in semiconductors.

3. Semiconductor Materials, An Introduction to Basic Principles, B. G. Yacobi, KLUWER ACADEMIC PUBLISHERS

4. Phase Transformations in Metals and Alloys, DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF, CRC Press, Third Edition

5. Fundamental s o f Semiconductor s, Peter Y. Yu, Manuel Cardona, Springer

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	-	-	-	-	-	-	-	3	3	-
CO-2	3	3	-	3	-	-	-	-	-	3	1
CO-3	3	3	3	-	-	-	-	-	3	3	-
CO-4	3	3	2	-	-	-	-	-	3	3	-
CO-5	3	3	3	-	-	-	2	-	3	3	-
CO-6	3	3	3	2	-	-	2	-	3	3	-
Average	3	3	2.75	2.50	0	0	2	0	3	3	1

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Nuclear Reaction I	Subject Code: TIU-PPH-T221
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Provide students with a comprehensive understanding of the fundamental principles of nuclear reactions and their applications in astrophysical contexts.
- 2. Explore the theoretical aspects of nuclear reactions, focusing on the mechanisms, crosssections, and reaction rates of different nuclear processes.
- 3. Provide a deep understanding of thermonuclear reactions, stellar structure, and nucleosynthesis across a wide range of astrophysical environments.

COURSE OUTCOME :

On completion of the course, the student will be able to:

Define and describe various nuclear reactions and explain reaction mechanisms,		
the concept of Q-values and cross-sections with an understanding of the time and	K1	
energy scales involved.		
Apply the optical model to describe direct reactions. They will also apply the		
concept of angular distributions in understanding scattering processes and		
explain the process of transfer reactions through spectroscopic factors and the	К3	
Asymptotic Normalization Constant (ANC).		
Understand the principles behind compound nuclear reactions using statistical		
models, nuclear fission through Bohr-Wheeler theory and evaluate the	KZ KZ	
applicability of R-matrix methods, dispersion theory, and the one-level formula		
for analyzing nuclear reactions.		
Apply their knowledge of nuclear astrophysics to analyze thermonuclear		
reaction rates, including the effects of low-energy behavior. They will also be	K3	
able to understand the concept of astrophysical S-factors and the Gamow peak.		
Understand the processes involved in Big Bang nucleosynthesis, such as He	К2	
production, the Be bottleneck, and the abundance of light elements.	KZ	
	the concept of Q-values and cross-sections with an understanding of the time and energy scales involved. Apply the optical model to describe direct reactions. They will also apply the concept of angular distributions in understanding scattering processes and explain the process of transfer reactions through spectroscopic factors and the Asymptotic Normalization Constant (ANC). Understand the principles behind compound nuclear reactions using statistical models, nuclear fission through Bohr-Wheeler theory and evaluate the applicability of R-matrix methods, dispersion theory, and the one-level formula for analyzing nuclear reactions. Apply their knowledge of nuclear astrophysics to analyze thermonuclear reaction rates, including the effects of low-energy behavior. They will also be able to understand the concept of astrophysical S-factors and the Gamow peak. Understand the processes involved in Big Bang nucleosynthesis, such as He	

	Apply the principles of nuclear burning in stars to analyze H burning, He burning,	
CO-6:	and advanced nuclear burning processes. They will also evaluate stellar	K4
CO-6:	nucleosynthesis processes and assess how these processes contribute to the	К4
	production of elements in stellar environments.	

COURSE CONTENT :

MODULE 1:INTRODUCTION8 HoursSurvey of reactions of nuclei: Strong, electromagnetic and weak processes, Types of reactions and
Q-values, Reaction mechanisms: Energy and time scales for direct and compound reactions,
Experimental observables: Cross sections - definitions and units; Angular distributions, Excitation
functions

MODULE 2:	MODELS FOR NUCLEAR REACTIONS

Direct reactions: Optical Model: From Hamiltonian to cross sections for elastic scattering; Partial waves, Phase shifts, Scattering amplitudes, S-matrix and its symmetry and reciprocity; Angular distributions, Optical potential.

16 Hours

8 Hours

6 Hours

7 Hours

Transfer reactions: Spectroscopic factors, Asymptotic normalization constant (ANC).

Compound nuclear reactions: Statistical model.

R-matrix methods: Dispersion theory, One level formula.

Nuclear Fission: Spontaneous fission, Mass energy distribution of fission fragments, Bohr-Wheeler theory, Fission isobars, Super-heavy nuclei.

MODULE 3: NUCLEAR ASTROPHYSICS

Thermonuclear reactions: Reaction rates. Low energy behaviour and astrophysical S-factors, Forward and reverse reactions, Nonresonant and resonant reactions, Maxwell-Boltzmann distribution of velocities, Gamow peak.

MODULE 4: BIG BANG NUCLEOSYNTHESIS

He production, Be bottleneck, Abundance of light elements. Stellar structure: Classical stars, Degenerate stars.

MODULE 5: STELLAR NUCLEOSYNTHESIS

Nuclear burning in stars: H burning, He burning, Advanced nuclear burning, Core collapse. Stellar nucleosynthesis: Abundance of elements, Production of nuclei, r-, s- and p-processes. **TOTAL LECTURES**

Books:

1. K. S. Krane, Introductory Nuclear Physics, John Wiley (1988).

2. Ian J. Thompson and Filomena M. Nunes, Nuclear Reactions for Astrophysics

Principles, Calculation and Applications of Low-Energy Reactions, Cambridge University Press (2009)

3. M. A. Preston and R. K. Bhaduri, Structure of the nucleus, Addison-Wesley (1975).

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	3	3	-	-	-	1	3	2	1
CO-2	3	3	3	3	-	-	-	1	3	2	1
CO-3	3	3	3	3	-	-	-	1	3	2	1
CO-4	3	3	3	3	-	-	-	1	2	3	1
CO-5	3	3	3	3	-	-	-	1	2	3	1
CO-6	3	3	3	3	-	-	-	1	2	3	1
Average	3	3	3	3	0	0	0	1	2.50	2.50	1

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Introduction to Cryogenics and Vacuum Technology	Subject Code: TIU-PPH-TE203A
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Provide a comprehensive understanding of cryogenic principles, techniques, and applications, including the production and measurement of low temperatures.
- 2. Analyze the behavior of materials under cryogenic conditions and explore their applications in research and industry.
- **3.** Develop expertise in designing, operating, and maintaining vacuum systems, along with understanding safety protocols for handling cryogenic and vacuum equipment.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recall the basic terminologies and concepts related to cryogenics, vacuum physics, and cryogenic safety practices, including the fundamental principles of cryogenic temperature production and vacuum systems.	K1
CO-2:	Understand various liquefaction systems, for N_2 & He, as well as, Cryorefrigerators. Also understand the methods of ultralow temperature production in milli and micro-kelvin range.	К2
CO-3:	Understand various sensors for cryo-temperature measurements, cryogen level sensors, and their controllers. They will also understand various possible cryogenic hazards and safety aspects.	K2
CO-4:	Interpret various important features and scopes of vacuum technology and their application to various modern vacuum pumps for production of high and ultrahigh vacuum.	К3
CO-5:	Understand the principles, operation and calibration procedures of various types of vacuum gauges for measurement of vacuum between 760 torr and 10 ⁻¹² Torr and various methods of leak detection techniques, helium mass spectrometer leak detectors.	K2
CO-6:	Analyze the designing of high and ultra-high vacuum systems and various commercial applications of vacuum technology.	K4

COURSE CONTENT :

MODULE 1: INTRODUCTION		4 Hours			
What is cryogenics, its importance and applications.					

MODULE 2:	CRYOGENIC TEMPERATURE PRODUCTION	15 Hours				
Production of	low temperatures: Basics of Nitrogen & Helium liquefiers, Cryo	refrigerators.				
Production of te	mperatures in mK range (Adiabatic demagnetization and Dilution ref	rigeration)				
MODULE 3:	PROPERTIES OF MATERIALS AT CRYOGENIC TEMPERATURES	9 Hours				
Electrical, Ther	mal and Mechanical Properties of solids at cryogenic Temperatur	es; Cryogenic				
Temperature se	nsors and calibration, Temperature controls at cryogenic temperatu	res; Cryogenic				
level sensing & o	controls. Cryogenic safety practices.					
MODULE 4:	MODULE 4: VACUUM TECHNOLOGY AND ITS APPLICATIONS 7 Hours					
Basic terminolo	gies in vacuum physics, Flow regimes and applications; Conductanc	e calculations;				
Production of va	acuum from rough to ultra-high vacuum (\sim 10-12 torr): Rotary pump	s, Oil diffusion				
pumps, Turbo-n	nolecular pumps and Cryo pumps					
MODULE 5:	VACUUM MEASUREMENT, LEAK DETECTION, AND SYSTEM	10 Hours				
	DESIGN					
Measurement o	Measurement of vacuum: Pirani and thermocouple gauges, Ionization gauges; Leak detection in					
vacuum systems; Basics of designing high and ultrahigh vacuum systems; Applications of vacuum						
technology.						
TOTAL LECTUR	RES	45 Hours**				

Books:

- 1. Cryogenic Systems (Oxford University Press) R. F. Barron.
- 2. Vacuum Technology (Third Edition)A. Roth.
- 3. Experimental Techniques in Low Temperature Physics... G. K. White
- 5. Fundamentals of Vacuum Technology Dr. Walter Umrath (Leybold Vacuum)

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	1	3	2	2
CO-2	3	3	3	3	-	-	-	1	2	3	3
CO-3	3	3	2	2	-	-	-	1	3	2	2
CO-4	3	3	3	3	-	-	-	1	2	3	3
CO-5	3	3	3	3	-	-	-	1	2	3	3
CO-6	3	3	3	3	-	-	-	1	2	3	3
Average	3	3	3	2.67	0	0	0	1	2.83	2.67	2.67

Program: M. Sc. in Physics	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Physics of Nanomaterials and thin films	Subject Code: TIU-PPH-E203B
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the fundamentals of nanoscience, the significance of nanotechnology, and the impact of scaling laws on physical properties.
- 2. Learn various surface analysis techniques, thin film deposition methods, and nanofabrication processes, including lithography and etching techniques.
- 3. Explore nanoparticle and nanowire fabrication methods, including 2D and 3D assemblies, VLS growth, and carbon nanotube synthesis mechanisms.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the basic concepts of nanoscience, scaling laws, and classification of nanomaterials.	К2
CO-2:	Explain the fundamentals of vacuum science, surface crystallography, thin film deposition, and surface analysis techniques.	К2
CO-3:	Analyze different nanofabrication methods, including lithography and etching techniques.	К3
CO-4:	Evaluate different nanoparticle assembly techniques and nanowire growth mechanisms.	K4
CO-5:	Explain the synthesis and growth mechanisms of carbon nanotubes and their applications.	K2
CO-6:	Apply nanotechnology concepts to analyze thin films, nanoparticle synthesis, and nanofabrication processes.	КЗ

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO NANOTECHNOLOGIES	10 Hours						
Discussion on nanoscience and its importance, modification of physical properties, laws of scaling								
in physics, met	hodologies: bottom up/ top down, study of nanomaterials.							
MODULE 2:	SURFACE ANALYSIS AND THIN FILMS	12 Hours						
Fundamentals	of vacuum science and technology, physical surface: perfect surf	faces and real						
surfaces, surfa	ce crystallography, deposition and growth techniques of thin film, t	techniques for						
surface and nat	nostructure analysis.							
MODULE 3:	NANOFABRICATION TECHNIQUES	11 Hours						
Lithographic te	echniques: optical and e-beam lithography, etching techniques: wet ch	emical etching,						
dry etching.								
MODULE 4:	NANOPARTICLE AND NANOWIRE FABRICATION	12 Hours						
2D and 3D nanoparticle assemblies, VLS and other method of nanowire growth. Carbon nanotubes								
synthesis and g	growth mechanism.							
TOTAL LECTU	RES	45 Hours						

Books:

- 1. Nanotechnologies: The physics of nanomaterials, volume 1, David S. Schmool, Apple academic press (1st Ed. 2021)
- 2. An introduction to nanoscience and nanotechnology, A. Nouailhat, (Wiley, 2008)
- 3. Nanomaterials, M. Benelmekki, (Morgan & Claypool Publishers, 2019)
- 4. The physics of thin films, R. W. Hoffman, (Academic Press, 1971)
- 5. Nanomaterial: An introduction to synthesis, Properties and Applications, 2nd Edition, D. Vollath (Wiley, 2013)

COs	P01	P02	P03	P04	P05	P06	P07	P08	PS01	PSO2	PSO3
CO-1	3	3	3	2	-	-	-	1	3	3	1
CO-2	3	3	3	2	-	-	-	1	3	3	2
CO-3	3	3	3	3	-	-	-	1	3	3	2
CO-4	3	3	2	2	-	-	-	1	3	3	2
CO-5	3	3	3	3	-	-	-	1	3	3	2
CO-6	3	3	3	3	-	-	-	1	3	3	3
Average	3	3	2.83	2.50	0	0	0	1	3	3	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Physics

Program: M.Sc. in Physics	Year, Semester: 1 st Yr., 3 rd Sem.			
Course Title: General Physics Laboratory II	Subject Code: TIU-PPH-L201			
Contact Hours/Week: 0-0-6 (L-T-P)	Credit: 3			

COURSE OBJECTIVE :

Enable the student to:

- 1. To provide students with hands-on experience in conducting fundamental physics experiments.
- 2. To develop proficiency in using advanced laboratory instruments and analyzing experimental data.
- 3. To enhance problem-solving skills and apply experimental techniques to real-world applications.

COURSE OUTCOME : On completion of the course, the student will be able to:

CO-1:	Demonstrate the ability to detect and analyze radiation using a GM counter and study the Hall effect in semiconductors.	К3
CO-2:	Accurately determine Planck's constant and measure the dielectric constant of materials to understand their electrical properties.	K4
CO-3:	Investigate the principles of Electron Spin Resonance (ESR) spectroscopy and analyze the wavelength of a He-Ne laser using a ruler.	K4
CO-4:	Apply Fourier Transform techniques to analyze waveforms and experimental data.	K3
CO-5:	Evaluate the efficiency of a solar cell by studying its variation with frequency, angle of inclination, and area.	К5
CO-6:	Develop data analysis, error estimation, and experimental reporting skills for physics research and practical applications.	K6

COURSE CONTENT :

MODULE 1:	Radiation Detection Using GM Counter	12 Hours						
GM Counter, radiation detection, ionizing radiation, count rate, background radiation, beta								
particles, gamm	particles, gamma radiation.							
MODULE 2:	Planck's Constant Measurement	9 Hours						
Planck's consta	nt, photoelectric effect, work function, threshold frequency, photon en	ergy, light						
source, stoppin	g potential							
MODULE 3:	Dielectric Constants Measurement	12 Hours						

MODULE 4:	Hall Effect in Semiconductors	12 Hours
Hall effect, sen	niconductor, magnetic field, charge carrier concentration, Hall volta	age, current,
magnetic force	2.	
		40.11
MODULE 5:	Electron Spin Resonance (ESR) Spectroscopy	12 Hours
Electron Spin	Resonance (ESR), magnetic field, electron spin, resonance frequenc	y, spectrometer, g-
factor, parama	ignetic materials.	
MODULE 6:	Wavelength Measurement of He-Ne Laser	9 Hours
He-Ne laser, w	vavelength, diffraction, ruler method, interference pattern, fringe sp	acing, laser beam,
diffraction ang	1.	
unn action ang	gle.	
MODULE 7:	Fourier Transform Analysis	12 Hours
MODULE 7:		12 Hours y-domain, Fourier
MODULE 7:	Fourier Transform Analysis form, frequency analysis, signal processing, time-domain, frequency	
MODULE 7: Fourier transf series, spectru	Fourier Transform Analysis form, frequency analysis, signal processing, time-domain, frequency m.	y-domain, Fourier
MODULE 7: Fourier transf series, spectru MODULE 8:	Fourier Transform Analysis form, frequency analysis, signal processing, time-domain, frequency m. Solar Cell Efficiency Measurement	y-domain, Fourier 12 Hours
MODULE 7: Fourier transf series, spectru MODULE 8: Solar cell effic	Fourier Transform Analysis form, frequency analysis, signal processing, time-domain, frequency m. Solar Cell Efficiency Measurement iency, frequency dependence, angle of inclination, area, light intens	y-domain, Fourier 12 Hours
MODULE 7: Fourier transf series, spectru MODULE 8: Solar cell effic	Fourier Transform Analysis form, frequency analysis, signal processing, time-domain, frequency m. Solar Cell Efficiency Measurement	y-domain, Fourier 12 Hours

Dielectric constant, permittivity, electric field, capacitance, material polarization, electric

Books:

1. R. A. Dunlop, Experimental Physics, Oxford University Press (1988)

2. A. C. Melissinos, Experiments in Modern Physics, Academic Press (1996)

3. E. Hecht, Optics, Addition-Wesley; 4th Edition (2001)

4. J. Verma, Nuclear Physics Experiments, New Age Publishers (2001)

5. Laboratory Manual with details about the experiments

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	2	2	2	-	-	-	-	1	2	3
CO-2	3	2	2	-	-	-	-	-	1	3	3
CO-3	3	2	3	2	-	-	-	-	1	2	3
CO-4	3	3	3	2	-	-	-	-	1	2	3
CO-5	3	2	3	2	-	-	-	-	1	2	3
CO-6	3	3	3	3	2	-	-	-	1	3	3
Average	3	2.33	2.67	2.20	2	0	0	0	1	2.33	3

Program: M.Sc. in Physics	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Entrepreneurship Skill Development I	Subject Code: TIU-PES-S291
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Implement and test the proposed solution.
- 2. Work in teams to develop a structured project.
- 3. Learn basic business strategies for taking a scientific idea forward.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Develop a prototype or working model of the solution.	K1
CO-2:	Collaborate effectively to execute a structured project.	K2
CO-3:	Understand fundamental business strategies for project sustainability.	КЗ
CO-4:	Apply cost analysis techniques to optimize prototype development.	K4
CO-5:	Demonstrate teamwork and problem-solving in project execution.	K5
CO-6:	Formulate strategies for improving and scaling up the solution.	K6

COURSE CONTENT :

MODULE 1:	EXECUTION AND PROTOTYPE DEVELOPMENT	10 Hours					
0 0	Designing and building a functional model of the solution. Testing and refining based on performance. Documenting findings and improvements.						
MODULE 2:	BUSINESS STRATEGY AND TEAM COLLABORATION	20 Hours					
	Basics of structuring a scientific startup idea. Team roles, responsibilities, and project management. Overcoming challenges in execution and decision-making.						
TOTAL LECTU	TOTAL LECTURES						

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	2	-	3	2	-	-	-	2	-	2	3
CO-2	-	2	-	-	2	3	-	2	-	-	3
CO-3	-	2	-	-	-	-	3	-	-	2	-
CO-4	2	-	-	3	-	-	-	2	-	2	-
CO-5	-	2	-	-	2	3	-	2	-	-	3
CO-6	-	-	2	-	-	2	2	3	-	2	2
Average	2	2	2.50	2.50	2	2.67	2.50	2.50	0	2	2.75

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Project I	Subject Code: TIU-PPH-P297
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Identify and analyze research problems through a structured literature review.
- 2. Assess theoretical and experimental gaps to formulate research objectives.
- **3.** Synthesize findings into a well-structured technical report and presentation.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Identify a relevant research problem through idea conceptualization.	K2
CO-2:	Analyze existing literature to refine objectives and research gaps.	K4
CO-3:	Analyze existing literature to identify theoretical or experimental gaps and	K4
0-5	define research objectives.	
CO-4:	Develop a mathematical model or experimental framework for the problem.	К6
CO-5:	Assess the scientific and societal impact of the research findings.	K5
CO-6:	Communicate research outcomes through a technical report and	К6
CO-0:	presentation.	

COURSE CONTENT:

MODULE 1:	RESEARCH PROBLEM IDENTIFICATION	7 Hours						
Introduction to research methodology and scientific inquiry, Identifying research gaps and formulating a problem statement, Understanding ethical considerations in research								
MODULE 2:	LITERATURE REVIEW & BACKGROUND STUDY	15 Hours						
Planning and conducting a literature survey, Tools for literature search: Journals, databases (Scopus, IEEE, Web of Science), Reviewing relevant theories, experiments, and models								
MODULE 3:	IDENTIFYING RESEARCH GAPS & DEFINING OBJECTIVES	10 Hours						

Literature Analysis: Evaluating key findings, limitations, and contradictions. Gap Identification: Recognizing theoretical or experimental gaps in existing research. Research Objectives: Defining precise research questions and justifying their relevance.

MODULE 4: MATHEMATICAL MODELING / EXPERIMENTAL DESIGN

Formulating hypotheses and research objectives. Developing a mathematical model or experimental setup. Selecting appropriate methods for data collection and analysis

MODULE 5: RELEVANCE & SOCIETAL IMPACT

Assessing the significance of the study in physics and interdisciplinary fields. Evaluating technological, industrial, and societal applications. Ethical implications and sustainability considerations.

MODULE 6: TECHNICAL REPORT & PRESENTATION

Structuring a scientific report (Abstract, Introduction, Methods, Results, Discussion, Conclusion). Preparing figures, tables, and references (LaTeX/MS Word). Presenting research findings through oral/poster presentations

TOTAL HOURS

Books:

Journals

CO-PO Mapping

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	2	3	3	-	-	-	-	-	-	2	3
CO-2	-	3	2	-	-	-	-	-	-	3	2
CO-3	-	3	2	-	-	-	-	-	-	3	2
CO-4	3	2	3	3	-	-	-	2	-	3	3
CO-5	-	2	2	-	-	-	2	-	-	3	-
CO-6	-	2	-	-	2	2	-	-	-	-	3
Average	2.50	2.33	2.40	3	2	2	2	2	0	2.33	2.60

10 Hours

60 Hours**

8 Hours

10 Hours

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.		
Course Title: Introduction to Python Programming	Subject Code: TIU-PPH-L205		
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2		

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand and apply fundamental Python programming concepts, gaining proficiency in syntax and basic structures.
- 2. Write clean, efficient, and effective Python code for practical applications in data analysis, machine learning, and scientific computing.
- 3. Leverage advanced Python features and libraries to tackle complex problems in postgraduate-level studies and research.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recall and recognize Python syntax, control structures (conditional statements and loops), and basic data types.	K1		
CO-2:	Understand the concepts of defining functions, working with modules, and using Python data structures like lists, tuples, dictionaries, and sets.			
CO-3:	Apply Python skills to read and write files, handle exceptions, and debug code using various techniques.	К3		
CO-4:	Analyze and implement object-oriented programming concepts like inheritance, polymorphism, and encapsulation, while performing data manipulation using Pandas.	K4		
CO-5:	Apply the use of Pandas for data analysis and assess the effectiveness of visualizations created using Matplotlib and Seaborn.	КЗ		
CO-6:	Apply Python programming to manipulate data, clean datasets, and create complex visualizations for data analysis	К3		

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO PYTHON AND CONTROL STRUCTURES	12 Hours			
Overview of Python, Setting up the environment, Python syntax and semantics, Variables and data					
types, Conditional statements (if, else, elif), Loops (for, while), List comprehensions.					

MODULE 2:	FUNCTIONS AND MODULES AND DATA STRUCTURES	12 Hours				
0	ons, Function arguments and return values, Importing and using modu cionaries, Sets and frozensets, Iterators and generators	ıles, Lists,				
MODULE 3:	FILE HANDLING, ERROR HANDLING AND DEBUGGING	12 Hours				
MODULE 5.	FILE HANDLING, EKKOK HANDLING AND DEDUGGING	12 Hours				
•	Reading and writing files, Working with CSV and JSON files, Exception handling, Debugging techniques, Logging.					
MODULE 4:	OBJECT-ORIENTED PROGRAMMING (OOP) AND DATA	12 Hours				
	ANALYSIS WITH PANDAS					
Classes and ob	jects, Inheritance and polymorphism, Encapsulation and abstraction, I	ntroduction to				
Pandas, DataFr	ames and Series, Data cleaning and manipulation					
MODULE 5:	DATA VISUALIZATION WITH MATPLOTLIB AND SEABORN	12 Hours				
Introduction to Matplotlib, Plotting with Seaborn, Creating complex visualizations						
TOTAL LECTU	RES	60 Hours**				

Books:

- "Python Crash Course" by Eric Matthes
 "Fluent Python" by Luciano Ramalho
 "Introduction to Machine Learning with Python" by Andreas C. Müller & Sarah Guido

COs	Р	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	01	2	3	4	5	6	7	8	1	2	3
CO1	3	2	1	1	-	-	-	-	1	2	2
CO2	3	2	1	1	-	-	-	-	1	2	2
CO3	3	3	1	2	-	-	-	-	1	2	2
CO4	3	3	1	2	-	-	-	-	1	3	2
CO5	3	2	1	2	-	-	-	-	1	3	2
CO6	3	3	1	2	-	-	-	-	1	3	2
Average	3	2.50	1	1.67	0	0	0	0	1	2.50	2

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 3rd Sem.		
Course Title: Use of AI and Different Software for scientific Research	Subject Code: TIU-PPH-L203		
Contact Hours/Week : 0–0–4 (L–T–P)	Credit: 2		

COURSE OBJECTIVE :

Enable the student to:

- 1. Effectively use AI tools and LaTeX for creating professional presentations and scientific reports and apply fundamental Python programming concepts, gaining proficiency in syntax and basic structures.
- 2. Gain proficiency in using various software tools for data analysis, enabling them to interpret and analyze complex data sets. Clean, efficient, and effective Python code for practical applications in data analysis, machine learning, and scientific computing.
- 3. Learn how to generate high-quality figures and visualizations for scientific presentations, enhancing data communication and understanding advanced Python features and libraries to tackle complex problems in postgraduate-level studies and research.

COURSE OUTCOME :

On completion of the course, the student will be able to:

	inpletion of the course, the student will be able to:	
CO-1:	Recall and identify the basic concepts of Artificial Intelligence (AI) and its advantages in different areas, including its use in presentations and report writing.	K1
CO-2:	Understand how to use AI-based software to create scientific presentations, write resumes, and generate research document summaries.	К2
CO-3:	Apply LaTeX commands and syntax to prepare and format scientific reports, including equations, figures, and tables.	КЗ
CO-4:	Apply LaTeX to manage references, citations using BibTeX, and customize document layouts and styles for scientific writing.	КЗ
CO-5:	Analyze and process data using software tools like OCTAVE, Origin, and other specialized software for data analysis, including generating statistical measures and performing Fast Fourier Transform (FFT) on signals.	K4
CO-6:	Apply the knowledge for generating accurate scientific plots and visualizations (bar-plots, contour-plots, surface plots, 3D & 4D plots) using software tools like Octave, Origin, Gnuplot, and Python.	К3

COURSE CONTENT :

MODULE 1:	12 Hours	
	tificial Intelligence (AI) and its advantages in different area, preparing sing AI based software, writing resume using AI, writing synopsis of a g AI.	
MODULE 2:	WRITING SCIENTIFIC REPORT USING LATEX	16 Hours
formatting equ	aTex and its advantages for scientific writing, basic LaTex commaniation, figures and tables in Latex. Managing references and citations ocuments layouts and styles in LaTex.	-
MODULE 3:	DATA ANALYSIS USING SOFTWARES:	16 Hours
Reading and w techniques, Lo	riting files, Working with CSV and JSON files, Exception handling, Debugging.	igging
MODULE 4:	GENERATING SCIENTIFIC PLOTS USING SOFTWARES:	16 Hours
Classes and ob	jects, Inheritance and polymorphism, Encapsulation and abstraction, I	ntroduction to
Pandas, DataFi	ames and Series, Data cleaning and manipulation	
TOTAL LECTU	IRES	60 Hours**

Books:

- 1. GNU Octave: Beginner's Guide by J. S. Hansen
- 2. AI for Beginners : A Concise Guide to ChatGPT, Bard, Bing AI and DALL-E by M. Jasim
- 3. The Power of Ai Presentation Maker: Unleashing Your Creative Potential by N.Tripathi
- 4. Gnuplot in Action- Understanding Data with Graphs by Philipp K. Janert.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	-	-	-	1	3	2
CO2	3	2	2	2	-	-	-	-	1	3	2
CO3	3	3	2	2	-	-	-	-	1	2	2
CO4	3	3	2	2	-	-	-	-	1	3	2
CO5	3	2	2	2	-	-	-	-	1	3	2
CO6	3	3	2	2	_	_	-	_	1	3	2
Average	3	2.50	2	2	0	0	0	0	1	2.83	2

SEMESTER IV

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.		
Course Title: Material Physics II	Subject Code: TIU-PPH-T220		
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4		

COURSE OBJECTIVE:

Enable the student to:

- 1. Explore dielectric, optical, and magnetic properties of materials and their applications.
- 2. Examine advanced topics in material physics, including ferroelectrics, polymers, smart materials, and the latest research trends in material science.
- 3. Understand the interaction of electromagnetic waves with materials and their applications in cutting-edge technologies like quantum materials and energy storage systems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain the polarization mechanisms and dielectric properties of materials.	K2				
CO-2:	Analyze optical phonon modes and their applications in photonics,	K4				
CO-2.	optoelectronics, and telecommunications.					
CO-3:	Apply knowledge of optical properties and their role in advanced material	K3				
CO-3.	devices such as plasmonics and metamaterials.					
CO-4:	Understand the theory and applications of ferroelectric materials,	K2				
CO-4:	piezoelectric effects, and related phenomena.					
CO-5:	Investigate magnetic properties in reduced dimensions, including their					
60-5.	applications in nanomaterials, thin films, and magnetoresistance.					
	Explore recent advancements in polymer physics and material physics,					
CO-6:	CO-6: including energy storage materials, quantum computing, and biomaterials					
	for modern technological applications.					

COURSE CONTENT:

MODULE 1:	DIELECTRIC AND OPTICAL PROPERTIES OF MATERIALS	9 Hours
-----------	--	---------

Theory of Electronic polarization and optical absorption, Ionic polarization, orientational polarization. Polarisation mechanism, Claussius-Mosotti equation for an isotropic linear dielectric, Temperature dependence of Dielectric Constants and Permanent Molecular dipole moment.Response of dielectrics to alternating fields.

MODULE 2: **OPTICAL PHONON MODE IN AN IONIC CRYSTAL**

7 Hours

Interaction of electromagnetic waves with optical modes, Polariton, Dispersion curves of Transverse Optical (TO) phonon and optical photon in a diatomic ionic crystal, LST relation. Dielectric function of the electron gas: Plasmon. Exciton, Metal-Insulator transition.

MODULE 3:	OPTICAL PROPERTIES OF MATERIALS	5 Hours
	light with matter. Optical constants (refractive index, absorptic erials and devices. Applications in optoelectronics and telecon	
	l metamaterials.	,

FERROELECTRIC CRYSTAL **5 Hours** MODULE 4: Theory of Ferroelectric transition- first order and second order phase transitions. Electrostriction.Luminescence, Antiferroelectricity, Piezo electricity, Fluorescence. Phosphorescence, Raman scattering, Spectroscopic techniques.

MODULE 5: MAGNETISM IN REDUCED DIMENSION	8 Hours
Techniques XMLD, XMCD, MFM, Spin-Glass systems, Magnetism of nanoparticles, na	ano-wires, thin
films, Magnetoresistance, GMR, TMR, CMR etc., Magnetic domain walls, domain wall o	lynamics.

POLYMER PHYSICS MODULE 6:

Introduction to Polymer Physics, Different types of polymers, conjugate polymers and its different properties.

MODULE 7:	ADVANCED TOPICS AND CURRENT RESEARCH

Smart materials and intelligent systems (shape memory alloys, piezoelectrics), Materials for energy storage and conversion (batteries, fuel cells, solar cells), Biomaterials and applications in biotechnology, Recent advancements and future trends in material physics, Materials for quantum computing and quantum materials.

TOTAL LECTURES

45 Hours**

Books:

- 1. Solid State Physics Ashcroft amd Mermin
- 2. Solid State Physics Kittel
- 3. Solid State Physics A J Dekker

4. Materials Science and Engineering An Introduction, William D. Callister, Jr., John Wiley & Sons, Inc.

5 Hours

6 Hours

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	3	2	-
CO2	3	3	1	1	-	-	-	-	3	3	-
CO3	3	3	2	1	-	-	-	-	3	3	2
CO4	3	2	1	1	-	-	-	-	3	2	-
CO5	3	3	1	1	-	-	-	-	3	3	2
CO6	3	2	2	2	-	-	1	-	3	2	1
Average	3	2.50	1.17	1	0	0	1	0	3	2.50	0.83

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.			
Course Title: Nuclear Reaction II	Subject Code: TIU-PPH-T222			
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4			

COURSE OBJECTIVE :

Enable the student to:

- 1. Provide students with a fundamental understanding of the interaction of radiation with matter, various types of radiation detectors, and the working principles of particle accelerators.
- 2. Gain knowledge of Radioactive Ion Beam (RIB) production methods and existing facilities, as well as acquire a comprehensive understanding of vacuum techniques, including their applications in scientific experiments.
- 3. Equip with the skills required to comprehend and apply the principles of electronics and data acquisition systems in radiation detection, facilitating practical problem-solving in nuclear physics and related fields.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Analyze how alpha, beta, and gamma radiation interact with different types of matter, and distinguish the differences in their interaction mechanisms. Use this knowledge to predict radiation behavior in various materials.	K4
CO-2:	Classify various types of radiation detectors, including gas-filled, scintillation, and semiconductor detectors. Critically assess their advantages, limitations, and applications in detecting different types of radiation.	K4
CO-3:	Analyze the working principles of various types of particle accelerators, such as electrostatic accelerators, cyclotrons, synchrotrons, and linear accelerators. Apply this understanding to evaluate their uses in nuclear and particle physics.	K4
CO-4:	Understand the production of radioactive ion beams (RIB), exploring the different methods and existing facilities used for RIB generation.	K2

CO-5:	Describe the basic definitions and classifications of vacuum techniques, the types of vacuum pumps, and the devices used for measuring and controlling vacuum.	K2
CO-6:	Illustrate the process of analog pulse formation in radiation detectors, including	K3
00 01	the basic and specialized circuits used in data acquisition systems.	110

COURSE CONTENT :

MODULE 1:	INTERACTION OF RADIATION WITH MATTER	9 Hours
Interaction of a	alpha, beta and gamma radiation with matter	
MODULE 2:	RADIATION DETECTORS	10 Hours
Gas-filled deter	ctors, Scintillation detectors, Semiconductor detectors	
MODULE 3:	PARTICLE ACCELERATORS	10 Hours
Electrostatic ad	ccelerators, Cyclotrons, Synchrotrons, Linear accelerators,	
Details of RIB,	Different methods to produce Radioactive Ion BeaM, Existing facilities	
MODULE 4:	VACUUM TECHNIQUES	8 Hours
Basic definition	ns and classifications, vacuum pumps, vacuum measuring/controlling c	levices.
_		
MODULE 5:	ELECTRONICS AND DATA ACQUISITION SYSTEM	8 Hours
Analog pulse	formation from radiation detectors, Analog to digital conversion, Ba	asic electronic
circuits, specia	lized electronic circuits.	
TOTAL LECTU	RES	45 Hours**

Books:

1. An Introduction to Experimental Nuclear Reactions, Chinmay Basu, CRC Press (2022)

2. K. S. Krane, Introductory Nuclear Physics, John Wiley (1988).

3. 1. Radiation Detection and Measurement, Glenn F Knoll

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	3	2	-
CO2	3	2	-	-	-	-	-	-	3	2	-
CO3	3	2	2	-	-	-	-	-	3	3	-
CO4	3	2	-	-	-	-	-	-	3	2	-
CO5	3	2	2	I	-	-	-	-	3	3	-
CO6	3	3	2	I	-	-	-	-	3	3	-
Average	3	2.17	2	0	0	0	0	0	3	2.50	0

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Superconducting Materials and Devices	Subject Code: TIU-PPH-E204A
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop a comprehensive understanding of the fundamental properties, theories, and types of superconductors, including the Meissner effect and London's theory.
- 2. Explore the critical properties of superconductors and their design, fabrication, and applications in superconducting systems such as wires, magnets, and storage devices.
- 3. Analyze the working principles and applications of SQUIDs in various fields, including biomagnetism and infrared detection.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Students will be able to define and list the basic properties of superconductors, such as zero resistance, perfect diamagnetism, the Meissner effect, and London's theory. They will also recognize the differences between Type 1 and Type 2 superconductors.	K1
CO-2:	Students will explain the fundamental principles of the Meissner effect, coherence length, penetration depth, and energy gap, and describe the behavior of superconductors in different states (e.g., intermediate and mixed states). They will also illustrate the differences between the critical fields and currents for Type 1 and Type 2 superconductors.	K2
CO-3:	Students will be able to apply London's theory to analyze superconducting materials and calculate the penetration depth, critical currents, and fields in various superconducting systems. They will also demonstrate the working principles of superconducting magnets and systems such as SMES (Superconducting Magnetic Energy Storage) through practical examples.	K3

CO-4:	Students will analyze the role of flux flow and flux pinning in Type 2 superconductors, compare the behavior of these superconductors under different magnetic fields, and evaluate the effects of magneto-thermal instabilities. They will also analyze the different stabilization criteria (Cryostatic, Dynamic, and Enthalpic) used in superconducting systems.	K4
CO-5:	Students will evaluate the effectiveness of superconducting energy storage (SMES) systems and interpret the operation of superconducting quantum interference devices (SQUIDs) in terms of their theoretical models. They will also compare the applications of DC and RF SQUIDs in various real-world situations.	K4
CO-6:	Students will be able to design basic superconducting magnets and fabricate simple superconducting systems, such as multifilamentary wires. They will also develop a conceptual framework for designing superconducting devices, including persistent switches and infrared detectors, based on the principles of superconductivity.	K4

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO SUPERCONDUCTIVITY AND BASIC PROPERTIES	8 Hours
Discovery, Zero resistance, Perfect Diamagnetism, Meissner effect, London's theory, Penetration		
depth, concept of coherence length and surface energy. Type 1 and Type 2 superconductors,		
Intermediate and mixed states, Critical currents and critical fields		
MODULE 2:	THEORETICAL FOUNDATIONS AND ENERGY GAP IN SUPERCONDUCTORS	4 Hours
Outlines of B-C-S theory, Concept of energy gap		
MODULE 3:	FLUX DYNAMICS AND STABILITY OF SUPERCONDUCTORS	15 Hours
Flux Flow, Flux Pinning, pinning force, Magneto-thermal instabilities in Type 2 superconductors, Flux jumps. Stabilization Criterion: Cryostatic, Dynanic& Enthalpic Stabilization.		
MODULE 4:	FABRICATION AND ENGINEERING OF SUPERCONDUCTING MATERIALS	9 Hours
Manufacture of long length superconducting multifilamentary wires, Design, fabrication of superconducting magnets. Persistent switches, Superconducting magnets energization. Basic concepts of Superconducting		
Energy Storage (SMES)		
MODULE 5:	APPLICATIONS OF SUPERCONDUCTIVITY IN TECHNOLOGY	9 Hours
Superconducting Quantum InterferenceDevices (SQUIDs): Theories of DC & RF SQUIDs, SQUIDs		
fabrications, Various applications of SQUIDs. Superconductive Switches, Infrared detectors and		
biomagnetism.		
TOTAL LECTURES		45 Hours**

Books:

- 1. Introduction to Superconductivity Roseins&Rhodrih
- 2. Applied Superconductivity, Vol. I & II Newhouse
- 3. Superconducting Materials Foner & Swartz.
- 4. Fundamentals of Superconductivity Vladimir Z. Kresin & Stuart A. Wolf.
- 5. Applied Superconductivity Williams
- 6. Superconducting Magnet Design Wilson

P01 P02 P03 P04 P05 P07 **P08 PSO1** PSO2 PSO3 COs **P06 CO-1** 3 3 -----2 2 3 2 **CO-2** 3 3 -----2 2 3 2 3 3 **CO-3** -----3 3 2 3 3 3 **CO-4** -----3 2 3 3 CO-5 3 3 -----3 3 2 3 **CO-6** 3 3 -----3 3 2 3 3 3 0 0 0 0 Average 2.67 3 2.67 2.33 0

Program: M.Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Renewable Energy and Energy Harvesting	Subject Code: TIU-PPH-E204B
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Introduce students to the limitations of fossil fuels and the significance of renewable energy sources in sustainable development.
- 2. Provide an in-depth understanding of various renewable energy technologies and energy harvesting methods.
- 3. Analyze the working principles, efficiency, and environmental impact of different energy conversion and harvesting techniques.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain the importance of renewable energy and assess the limitations of fossil fuels.	К2
CO-2:	Analyze the working principles and applications of solar and wind energy systems.	K4
CO-3:	Compare various ocean, geothermal, and hydro energy technologies in terms of efficiency and feasibility.	K4
CO-4:	Analyze different energy harvesting methods, including piezoelectric and electromagnetic systems.	K4
CO-5:	Understand the role of fuel cells in energy conversion and storage.	K2
CO-6:	Examine the environmental impact and sustainability of renewable energy sources.	K4

COURSE CONTENT:

MODULE 1: INTRODUCTION TO RENEWABLE ENERGY		5 Hours
Fossil fuels an	d nuclear energy: Limitations and environmental concerns, Need	for renewable
energy and ov	erview of non-conventional energy sources, Developments in solar	, wind, ocean,
biomass, geoth	ermal, and hydro energy	

MODULE 2:	SOLAR ENERGY	7 Hours
Importance an	nd storage of solar energy, solar pond, Applications: solar water hea	ater, flat plat
collector, sola	r distillation, solar cooker, greenhouses, Photovoltaic (PV) systems: c	haracteristics
PV models, eq	uivalent circuits, Maximum power point tracking (MPPT), sun-tracking	systems
		-
MODULE 3:	WIND ENERGY HARVESTING	6 Hour
Fundamentals	of wind energy, wind turbines, types of wind generators, Electrical ma	chines used i
wind turbine	s, power electronic interfaces, Grid interconnection: synchroniza	ation, curren
injection, islan	lding	
MODULE 4:	OCEAN ENERGY	5 Hour
Ocean energy	v vs. wind and solar energy, Wave characteristics, wave energy o	devices, Tida
characteristics	s, tidal energy technologies, Ocean Thermal Energy Conversion (O	ГЕС), osmoti
nowor ocoon l		
power, ocean i	biomass energy	
power, ocean i	blomass energy	
-	GEOTHERMAL AND HYDRO ENERGY	5 Hour
MODULE 5: Geothermal	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re	
MODULE 5: Geothermal	GEOTHERMAL AND HYDRO ENERGY	
MODULE 5: Geothermal technologies, F	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy	esources and
MODULE 5: Geothermal technologies, I MODULE 6:	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING	esources and 5 Hour
MODULE 5: Geothermal t technologies, F MODULE 6: Basics of pie	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical	esources and 5 Hour
MODULE 5: Geothermal t technologies, F MODULE 6: Basics of pie	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING	esources and 5 Hour
MODULE 5: Geothermal technologies, F MODULE 6: Basics of pie piezoelectric g	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications	esources an <u>5 Hour</u> modeling c
MODULE 5: Geothermal f technologies, H MODULE 6: Basics of pie piezoelectric g MODULE 7:	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY	esources an <u>5 Hour</u> modeling c 5 Hour
MODULE 5: Geothermal 1 technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY itors, physics and mathematical models, Recent advancements in elegenerators	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti
MODULE 5: Geothermal f technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera energy harve	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti
MODULE 5: Geothermal f technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera energy harve	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY tors, physics and mathematical models, Recent advancements in elesting, Carbon capture technologies, energy storage in cells a l impact and sustainability	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti
MODULE 5: Geothermal fittechnologies, Fi	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY stors, physics and mathematical models, Recent advancements in eleventing, Carbon capture technologies, energy storage in cells a limpact and sustainability FUEL CELLS & THEIR APPLICATIONS	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti and batteries 7 Hour
MODULE 5: Geothermal technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera energy harve Environmenta MODULE 8: Design princip	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower resources and energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY tors, physics and mathematical models, Recent advancements in eleventing, Carbon capture technologies, energy storage in cells al impact and sustainability FUEL CELLS & THEIR APPLICATIONS oles and operation of fuel cells, Types of fuel cells and their convers	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti and batteries 7 Hour
MODULE 5: Geothermal technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera energy harve Environmenta MODULE 8: Design princip	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower re Environmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY stors, physics and mathematical models, Recent advancements in eleventing, Carbon capture technologies, energy storage in cells a limpact and sustainability FUEL CELLS & THEIR APPLICATIONS	5 Hour modeling o 5 Hour ectromagneti nd batteries 7 Hour
MODULE 5: Geothermal technologies, F MODULE 6: Basics of pie piezoelectric g MODULE 7: Linear genera energy harve Environmenta MODULE 8: Design princip	GEOTHERMAL AND HYDRO ENERGY resources and energy extraction technologies, Hydropower reEnvironmental impact of hydro energy PIEZOELECTRIC ENERGY HARVESTING ezoelectricity: physics and material characteristics, Mathematical generators, Piezoelectric energy harvesting applications ELECTROMAGNETIC ENERGY HARVESTING & SUSTAINABILITY ators, physics and mathematical models, Recent advancements in elevating, Carbon capture technologies, energy storage in cells a l impact and sustainability FUEL CELLS & THEIR APPLICATIONS oles and operation of fuel cells, Types of fuel cells and their convers fuel cells in energy storage and transport	esources an <u>5 Hour</u> modeling c <u>5 Hour</u> ectromagneti and batteries 7 Hour

Books:

- 1. Renewable Energy: Power for a Sustainable Future Godfrey Boyle
- 2. Solar Energy: Principles of Thermal Collection and Storage S.P. Sukhatme & J.K. Nayak
- 3. Wind Energy Explained: Theory, Design, and Application J.F. Manwell, J.G. McGowan, A.L. Rogers
- 4. Introduction to Ocean Energy Technologies Vikas Khare & Savita Nema
- 5. Geothermal Energy: Renewable Energy and the Environment William E. Glassley
- 6. Hydropower Development: Renewable Energy and the Environment Paul Breeze

7. Energy Harvesting for Autonomous Systems – Stephen Beeby & Neil White

8. *Handbook of Fuel Cells: Fundamentals, Technology, and Applications* – Wolf Vielstich, Arnold Lamm, Hubert A. Gasteiger

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	2	-	2	2	-
CO2	3	2	2	-	-	-	-	-	2	3	-
CO3	3	2	2	-	-	-	-	-	2	3	-
CO4	3	2	2	-	-	-	-	-	2	3	-
CO5	3	1	-	-	-	-	-	-	2	2	-
CO6	3	2	-	-	-	-	3	-	2	3	-
Average	3	1.83	2	0	0	0	2.50	0	2	2.67	0

Program: M.Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Advanced Condensed Matter Physics	Subject Code: TIU-PPH-E206A
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Apply the Concept of the Semiclassical Model of Electron Dynamics
- 2. Recognize the Fundamentals of the Semiclassical Theory of Conduction in Metals
- 3. Investigate and Devise the Phenomena of Band Structure of Selected Metals
- 4. Construct and Apply Concepts of Beyond the Relaxation Time Approximation Model
- 5. Interpret and Utilize the Fundamentals of Beyond the Independent Electron Approximation
- 6. Analyze Surface Effects and Understand the Concept of Defects in Crystal

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Apply the concept of Semiclassical Model of Electron Dynamics	КЗ					
CO-2:	Recognize the fundamentals of Semiclassical Theory of Conduction in						
00 2.	Metals						
CO-3:	Investigate and devise the phenomena of Band Structure of Selected Metals	K4					
CO-4:	Construct and apply concepts of Beyond the Relaxation time	КЗ					
CO-4.	Approximation Model						
CO-5:	Interpret and Utilize the fundamentals of Beyond the Independent Electron	КЗ					
CO-3.	Approximation and use it in physics problems.						
CO-6:	Analyze Surface Effects and understand the concept of defects in crystals.	K4					

COURSE CONTENT :

MODULE 1:	SEMICLASSICAL MODEL OF ELECTRON DYNAMICS	5 Hours			
Wave Packets of	of Bloch Electrons, Semiclassical Mechanics, General Features of the	Semiclassical			
Model, Static Electric Fields, The General Theory of Holes, Uniform Static Magnetic Fields					
Effect and Magn	etoresistance				

MODULE 2:	SEMICLASSICAL THEORY OF CONDUCTION IN METALS	7 Hours
-----------	--	---------

The Relaxation-Time Approximation, General form of Nonequilibrium Distribution Function, DC Electrical Conductivity, AC Electrical Conductivity, Thermal Conductivity, Thermoelectric Effects, Conductivity in a Magnetic Field

BAND STRUCTURE OF SELECTED METALS MODULE 3:

Alkali Metals, Noble Metals, Divalent Simple Metals, Trivalent Simple Metals, Tetravalent Simple Metals, Semimetals, Transition Metals, Rare Earth Metals, Alloys.

MODULE 4: **BEYOND THE RELAXATION TIME APPROXIMATION**

Source of Electronic Scattering, Scattering Probability and Relaxation Time, Genrral Description of Collisions, The Boltzmann Transport Equation, Impurity Scattering, Wiedemann - Franz Law, Matthiessen's Rule, Scattering in isotropic Materials.

BEYOND THE INDEPENDENT ELECTRON APPROXIMATION MODULE 5: 7 Hours

The Hartree Equations, The Hartree – Fock Equation for solids, Correlation, Screening – The **Dielectric Function**

MODULE 6: SURFACE EFFECTS

The work Function, Contact Potentials, Low energy Electron Diffraction, Field Ion Microscopy, **Electronic Surface levels**

MODULE 7: **DEFECTS IN CRYSTALS**

Thermodynamics of Point Defects, Schottky and Frenkel Defects, Annealing, Electrical Conductivity of Ionic Crystals, Color Centers, Polarons and Excitons, Dislocations, Strength of Crystals, Crystal Growth, Stacking Faults and Grain Boundaries **TOTAL LECTURES**

45 Hours**

Books:

1. Solid State Physics – Ashcroft and Mermin

2. Solid State Physics – Kittel

CO-PO Mapping

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	1	-	-	-	-	-	-	3	-
CO-2	3	3	1	-	-	-	-	-	-	3	-
CO-3	3	3	1	-	-	-	-	-	-	3	-
CO-4	3	3	1	-	-	-	-	-	-	3	-
CO-5	1	3	1	-	-	-	-	-	-	3	-
CO-6	3	3	3	-	-	-	-	-	-	3	-
Average	2.67	3	1.33	0	0	0	0	0	0	3	0

7 Hours

7 Hours

7 Hours

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Introduction to Plasma Physics	Subject Code: TIU-PPH-E206B
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. To understand the fundamental properties and applications of plasma in various scientific and technological domains.
- 2. To analyze theoretical models of plasma, including single-particle motion, fluid dynamics, and kinetic theory, for explaining plasma behavior.
- 3. To explore plasma drifts, waves, instabilities and different nonlinear effects in both collisional and collisionless plasmas.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	recall and list key plasma characteristics such as quasineutrality, Debye shielding, temperature, and density, as well as explain the concept of plasma oscillation.	K1
CO-2:	understand and explain the motion of particles in various uniform and nonuniform fields and describe the resulting plasma drifts.	К2
CO-3:	apply the fluid model of plasma to address problems involving continuity, magnetic pressure, and magnetic field dynamics within plasma systems.	КЗ
CO-4:	understand the different types of plasma waves and explain their characteristics in both fluid and kinetic theory contexts.	K2
CO-5:	apply the principles of kinetic theory to solve problems involving the Boltzmann equation, Vlasov equation, and analyze Landau damping in plasma systems.	КЗ
CO-6:	analyze the stability of plasma, classify plasma instabilities, and apply the principles of non-linear effects to understand plasma dynamics.	K4

COURSE CONTENT :

MODULE 1: INTRODUCTION:							5 Hours
Development,	Temperature,	Density,	Quasineutrality,	Debye	Shielding,	Plasma	parameters,
application of p	olasma physics i	n differen	t areas of science.				

MODULE 2:	ORBIT THEORY:	
Particle motion	in uniform Flectric	Ma

Particle motion in uniform Electric, Magnetic and Gravitational field. Plasma Drifts- ExB drift, Grad-B drift, Curvature drift, Polarization drift, Finite Larmor radius effect

MODULE 3: FLUID MODEL:

The fluid equation of motion, Fluid drift perpendicular to **B**, Fluid drift parallel to **B**, Magnetic Pressure, Frozen in Magnetic field.

MODULE 4: PLASMA WAVES:

Plasma oscillations, Electron Plasma waves, Ion acoustic waves, Electrostatic electron oscillations perpendicular to B, Electrostatic ion waves perpendicular to B, Lower-Hybrid Frequency, MHD waves.

MODULE 5: KINETIC THEORY OF PLASMA:

Statistical description of plasmas, B.B.G.K.Y hierarchy, Boltzmann equation, Vlasov equation, Electron Landau damping, Ion-Landau damping.

MODULE 6: EQUILIBRIUM AND STABILITY:

Hydromagnetic Equilibrium, The concept of β , Classification of Instabilities, Two stream Instability, Nyquist method-Penrose criterion of stability, Bump on tail instability, BGK waves.

MODULE 7:	NON-LINEAR EFFECTS:	7 Hours
Ponderomotive	force, Kd-V equation, Plasma echo, Nonlinear Schrodinger Equation.	
TOTAL LECTU	RES	45 Hours**

Books:

- 1. Introduction to Plasma Physics and Controlled Fusion by F F Chen
- 2. Fundamental of Plasma Physics by J. A. Bittencourt
- 3. Basic Plasma Physics by Basudev Ghosh
- 4. Principle of Plasma Physics by N. A. Krall and A. W. Trivelpiece

CO-PO Mapping

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	2	2	-	-	-	2	3	2	2
CO-2	3	3	2	2	-	-	-	2	3	2	2
CO-3	3	3	3	3	-	-	-	2	3	3	2
CO-4	3	3	3	3	-	-	-	2	3	3	2
CO-5	3	3	3	3	-	-	-	2	3	3	3
CO-6	3	3	3	3	-	-	-	2	3	3	3
Average	3	3	2.67	2.67	0	0	0	2	3	2.67	2.33

5 Hours

5 Hours

6 Hours

10 Hours

TECHNO INDIA UNIVERSITY W E S T B E N G A L

Department of Physics

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Laser Physics	Subject Code: TIU-PPH-E206C
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. To develop a fundamental understanding of laser physics, including coherent electromagnetic waves, transition rates, population inversion, and laser resonators.
- 2. To explore laser construction, pumping systems, beam propagation, resonator stability, Qswitching, and ultrafast laser techniques.
- 3. To study different types of lasers, including gas, solid-state, chemical, and semiconductor lasers, and their applications in various fields.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Apply the basic concepts of principle of operation of a LASER	КЗ
CO-2:	Recognize the fundamentals of Q-switching and construction of a LASER	К2
CO-3:	Investigate and devise the phenomena of Gaussian beam propagation	K4
CO-4:	Construct and apply concepts of various types of resonators	КЗ
CO-5:	Interpret and Utilizethe advanced concepts of various kinds of Q-switching	КЗ
CO-6:	Analyze the different kinds of LASERS and their principle of operation.	K4

COURSE CONTENT :

MODULE 1:	BASIC LASER PRINCIPLE	5 Hours
Coherent electr	omagnetic wave, Summary of black body radiation, Quantum theory f	or evaluation
of the transitio	n rates and Einstein coefficients-Allowed and forbidden levels-Metasta	able state,
Basic theory of	laser resonator and principle behind laser oscillator, Population inver	sion, Rate
equations for t	nree level and four level lasers, Two band laser and Quasi-band laser, T	Threshold of
power calculat	on, Various broadening mechanism, Homogeneous and inhomogeneou	us
broadening.		
MODULE 2:	BASIC LASER SYSTEM	7 Hours
Basic concept o	f construction of laser system, Various pumping system, Pumping cavi	ities for solid
state laser syst	em, Q switching, Characteristics of host materials and doped ions.	
MODULE 3:	OPTICAL BEAM PROPAGATION	7 Hours

Paraxial ray analysis, Wave analysis of beams and resonators, Propagation and properties of Gaussian beam, Gaussian beam in lens like medium, ABCD law-Gaussian beam focusing.

MODULE 4: RESONATORS

Stability of resonators-'g' parameter, Various types of resonators, Evaluation of beam waist of such combination, Design aspect of resonator for various types of lasers, Unstable resonator and their application.

MODULE 5: **O-SWITCHING**

Giant pulse theory, Different Q-switching techniques: mechanical Q-switching, electro-optic Qswitching, acousto-optic Q-switching, dye Q-switching, Raman-Nath effect.

ULTRAFAST PHENOMENA MODULE 6:

Basics of femtosecond pulses, Principle of generation of ultrafast pulses (mode locking), Active and passive mode locking, Basic concepts for measurement of fast processes, Streak technique, Stroboscopy, sampling technique, Nonlinear optical methods for measuring ultrashort pulses.

DIFFERENT LASER SYSTEMS MODULE 7:

5 Hours

Gas Lasers:

(i) Molecular gas lasers- CO₂ laser & N₂, (ii) Ionic gas laser – Ar⁺ laser, (iii) Gas dynamic laser (iv) High pressure pulsed gas laser,

Solid State Laser:

(i) Nd:YAG laser, (ii) Nd:Glass laser, comparison of performances, (iii) Tunable solid state laser: Ti:sapphire laser; Alexandrite laser

Chemical Laser:

HF laser, HCl laser, COIL Excimer laser; Color centre laser; Free electron laser; semiconductor diode laser 45 Hours**

TOTAL LECTURES

Books:

1. Lasers: Principles, Types and Applications by K. R. Nambiar, New Age International, 2006 ISBN: 8122414923, 9788122414929

2. Lasers by A. E. Siegman, University Science Books, 1986 ISBN: 0935702113, 9780935702118

CO-PO Manning

CO I O M	-PPB										
COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	3	2	-	-	-	-	-	-	3	1
CO-2	3	3	2	-	-	-	-	-	-	3	1
CO-3	3	3	1	-	-	-	-	-	-	3	1
CO-4	3	3	1	-	-	-	-	-	-	3	1
CO-5	3	3	1	-	-	-	-	-	-	3	1
CO-6	3	3	-	-	-	-	-	-	-	3	1
Average	3	3	1.4	0	0	0	0	0	0	3	1

7 Hours

7 Hours

Program: M.Sc. in Physics	Year, Semester: 2 nd Yr., 4 th Sem.
Course Title: Advanced Physics Lab	Subject Code: TIU-PPH-L202
Contact Hours/Week: 0-0-6 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop an understanding of advanced experimental techniques for investigating electrical, optical, and thermal properties of various materials, including nano-materials and thin films.
- 2. Enhance practical skills in using modern scientific instruments such as UV/VIS spectrophotometers, fiber optics setups, and charge particle detectors for precise measurements.
- 3. Analyze and interpret experimental data related to quantum efficiency, thermoelectric properties, piezoelectric coefficients, and electrical transport in materials for real-world applications.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Demonstrate the ability to measure and analyze the electrical transport properties of nano-materials, thin films, and semiconductor devices.	КЗ
CO-2:	Investigate the Faraday effect, piezoelectric behavior, and optical properties of various materials using He-Ne LASER, UV/VIS spectrophotometer, and fiber optics systems.	K4
CO-3:	Assess the thermal properties of solids, thin films, and materials by measuring thermal conductivity, thermoelectric power, and thermal expansion.	К5
CO-4:	Conduct experiments to determine the energy calibration of charged particles and barrier potential of transistors, and interpret doping profiles in semiconductor junctions.	К3
CO-5:	Design and implement experimental techniques for accurate thickness determination of thin foils and materials using advanced measurement tools	K6
CO-6:	Examine and interpret the quantum efficiency of LEDs, ionic conductivity of materials, and absorption/transmission spectra for understanding advanced material properties	К5

MODULE 1:	I-V Characteristics of Nano-Materials	6 Hours
I-V characteristi	۔ cs, current-voltage curve, nano-materials, resistivity, nano-scale, condu	ictance,
nanostructures,	electrical properties.	
MODULE 2:	Faraday Effect using He-Ne Laser	6 Hours
Faraday effect, o	ptical rotation, magneto-optical effect, magnetic field, polarization, He-	Ne laser,
Faraday rotation	n, optical material.	
MODULE 3:	Thermal Conductivity of Solids	6 Hours
Thermal conduc	tivity, heat transfer, Fourier's law, steady-state conduction, temperatur	re gradient,
heat flow, solid	naterials.	
MODULE 4:	Fibre Optics Parameters Measurement	6 Hours
Fibre optics, re	fractive index, numerical aperture, critical angle, attenuation, light	propagation.
optical fibers, m		FF-0,
MODULE 5:	Electrical Transport in Nano-Fibres	6 Hours
Nana fibrog ala	trical transport proportion conductor consistence gurrent quantum	offorta
	ctrical transport properties, conductance, resistance, current, quantum nano-scale materials.	enects,
MODULE 6:	P-E Loop and Piezoelectric Coefficients Measurement	6 Hours
P-E loop, piez	ا pelectric effect, polarization, electric field, piezoelectric coefficient	s, hysteresis,
material respon	se, mechanical stress.	
MODULE 7:	Thermoelectric Power of Thin Films	9 Hours
Thermoelectric	ا power, Seebeck effect, thin films, temperature gradient, voltage genera	tion, material
conductivity, the		
MODULE 8:	Energy Calibration of Charged Particles	6 Hours
Charged particle	s, energy calibration, particle detector, ionization, energy spectrum, pa	rticle
• •	rection techniques.	
MODULE 9:	Thickness Measurement of Thin Foil	9 Hours
Thin foil, thickn	ess measurement, optical interference, light absorption, reflectivity, int	erference
fringes, surface		
MODULE 10:	Barrier Potential and Doping Profile of Transistor Junctions	6 Hours
Barrier potentia	l, doping profile, transistor junctions, semiconductor, p-n junction, curi	ent-voltage
Barrier potentia characteristics, l		rent-voltage

Ionic conductivity, ion transport, conductivity, electrolytes, solution conductivity, conductivity cell, electrolyte.

MODULE 12:	Absorption/Transmission Spectra of Thin Films	6 Hours
	ctrum, transmission spectrum, thin films, UV-VIS spectrophotometer, op d gap, light absorption.	otical
MODULE 13:	Linearization of LED Characteristics and Quantum Efficiency	6 Hours
	stics, quantum efficiency, light emission, forward voltage, current-voltag mission spectrum.	ge curve,
MODULE 14:	Thermal Expansion of a Material	6 Hours
-	sion, coefficient of linear expansion, temperature change, material prop l stress, heat conduction.	erties, length
TOTAL	Any 8 experiments	90 Hours**

Books:

- 1. R. A. Dunlop, Experimental Physics, Oxford University Press (1988)
- 2. A. C. Melissinos, Experiments in Modern Physics, Academic Press (1996)
- 3. E. Hecht, Optics, Addition-Wesley; 4th Edition (2001)
- 4. J. Verma, Nuclear Physics Experiments, New Age Publishers (2001)
- 5. Laboratory Manual with details about the experiments
- 6. R. A. Dunlop, Experimental Physics, Oxford University Press (1998)
- 7. A. Lipson, S. G. Lipson, H. Lipson, Optical Physics, Cambridge University Press; 4th (2010)
- 8. E. Hecht, Optics, Addition-Wesley; 4th Edition (2001)
- 9. Laboratory Manual with details about the experiments

10. Manuals and journals

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	2	2	3	-	1	-	1	1	2	3
CO-2	3	3	2	2	-	1	-	1	1	3	3
CO-3	3	3	2	2	-	1	-	1	1	2	3
CO-4	3	3	2	1	-	1	-	1	1	2	3
CO-5	3	3	3	2	-	1	-	1	1	2	3
CO-6	3	3	2	3	-	1	-	1	1	3	3
Average	3	2.83	2.17	2.17	0	1	0	1	1	2.33	3

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Physics

Program: M.Sc. in Physics	Year, Semester: 2 nd Yr.,4 th Sem
Course Title: Entrepreneurship Skill Development II	Subject Code: TIU-PES-S292
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Present the developed solution as a prototype.
- 2. Demonstrate the real-world applicability of the idea.
- 3. Communicate the project effectively in a structured format.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Finalize and refine the prototype model.	K1
CO-2:	Prepare and deliver an effective presentation on the project.	K2
CO-3:	Communicate the scientific and business potential of the solution.	КЗ
CO-4:	Apply data-driven decision-making to validate the final prototype.	K4
CO-5:	Demonstrate networking and pitching skills for scientific solutions.	K5
CO-6:	Formulate future strategies for commercialization and further research.	K6

COURSE CONTENT :

MODULE 1:	PROTOTYPE FINALIZATION AND TESTING	10 Hours					
Refining the prototype based on feedback. Testing for efficiency, sustainability, and reliability. Troubleshooting and improving design.							
MODULE 2:	FINAL PRESENTATION AND PROJECT REPORT	20 Hours					
Structuring the final project report. Presenting findings to faculty and peers. Discussing future prospects and scalability of the idea.							
TOTAL LECTU	30 Hours**						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	2	2	-	-	-	-	1	2	2	2
CO2	-	1	-	-	3	2	-	-	-	1	-
CO3	1	2	2	-	2	2	-	-	1	2	1
CO4	2	2	3	2	-	-	-	-	2	3	2
CO5	-	2	2	-	3	3	-	-	1	2	-
CO6	2	2	2	-	-	-	-	1	2	2	2
Average	1.75	1.83	2.20	2	2.67	2.33	0	1	1.60	2	1.75

Program: M.Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Project II	Subject Code: TIU-PPH-P298
Contact Hours/Week: 0-0-12 (L-T-P)	Credit: 6

COURSE OBJECTIVE:

Enable the student to:

- 1. Implement mathematical models or synthesis techniques to investigate the research problem.
- 2. Utilize appropriate analytical methods to interpret results and ensure their accuracy.
- 3. Present research findings through a structured technical report and oral presentation.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Enhance and optimize the research problem based on prior findings.	К6
CO-2:	Apply the developed mathematical model or synthesis procedure.	К3
CO-3:	Employ appropriate analytical methods to interpret research data.	K4
CO-4:	Analyze extracted results and validate them against existing theories or	К6
C0-4:	experiments.	
CO-5:	Compile findings into a structured technical report.	К6
CO 61	Communicate research outcomes effectively through oral or visual	К6
CO-6:	presentations.	

COURSE CONTENT:

MODULE 1:	REFINEMENT OF RESEARCH IDEA	20 Hours					
Reviewing Phase 1 findings and feedback. Optimizing research objectives based on analysis. Finalizing research scope and approach							
MODULE 2:	IMPLEMENTATION OF METHODOLOGY	40 Hours					
Applying math simulations, or	calculations,						

MODULE 3:	ANALYTICAL TECHNIQUES & DATA INTERPRETATION	40 Hours
-	applying appropriate analytical methods. Processing and interpart aring results with existing theoretical or experimental data	preting research
MODULE 4:	RESULT VALIDATION & CRITICAL ANALYSIS	30 Hours
•	iracy and reliability of obtained results. Evaluating consistency viples. Identifying limitations and proposing improvements	with established
MODULE 5:	TECHNICAL REPORT WRITING	25 Hours
Conclusion). Fo	e research report (Abstract, Introduction, Methodology, Resu prmatting and referencing using scientific writing tools (LaTeX/MS V es, tables, and citations	
MODULE 6:	RESEARCH PRESENTATION	20 Hours
	ffective oral or poster presentation. Communicating key findings ressing questions and feedback from evaluators	with clarity and
TOTAL LECTU	RES	175 Hours**

Books:

Journals

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	3	2	2	-	-	-	1	2	2	2
CO2	2	2	2	2	-	-	-	-	2	3	2
CO3	3	3	2	3	-	-	-	-	3	3	2
CO4	3	3	2	3	-	-	-	-	3	3	2
CO5	2	2	-	-	2	-	-	-	2	2	2
CO6	2	2	-	-	3	2	-	-	2	2	2
Average	2.33	2.50	2	2.50	2.50	2	0	1	2.33	2.50	2

Program: M.Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Comprehensive Viva	Subject Code: TIU-PPH-G298
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Consolidate and integrate theoretical knowledge acquired throughout the MSc Physics program to ensure a comprehensive understanding of core concepts.
- 2. Develop critical thinking and problem-solving abilities by discussing and analyzing fundamental and advanced physics topics.
- 3. Foster effective scientific communication skills by articulating answers confidently in a viva voce setting.

COURSE OUTCOME:

On completion of the course, the student will be able to:

on completion of the course, the student will be usic to.						
CO-1:	Demonstrate a comprehensive understanding of fundamental and advanced concepts in classical mechanics, quantum mechanics, statistical mechanics,	К2				
	and thermodynamics.					
CO-2:	Analyze and interpret complex physical phenomena related to condensed	K4				
00 2.	matter physics, nuclear physics, particle physics, and electromagnetic theory.					
CO-3:	Apply mathematical methods and computational techniques to solve	КЗ				
CO-3.	complex physics problems and model physical systems accurately.	13				
CO-4:	Evaluate experimental techniques, data analysis methods, and	К5				
CO-4.	instrumentation related to advanced experimental physics.	KJ				
CO-5:	Integrate interdisciplinary concepts to understand and explain real-world	К5				
0-5:	physical applications and advanced research problems.					
	Demonstrate effective scientific communication skills by clearly presenting					
CO-6:	theoretical concepts, problem-solving approaches, and experimental findings	КЗ				
	during the viva voce.					

COURSE CONTENT:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	3	2	-
CO2	3	3	-	-	-	-	-	-	3	3	-
CO3	3	3	2	-	-	-	-	-	3	2	2
CO4	3	3	2	2	-	-	-	-	3	3	2
CO5	3	3	2	-	-	-	-	-	2	3	2
CO6	-	2	-	-	3	2	-	-	-	2	2
Average	3	2.67	2	2	3	2	0	0	2.33	2.50	2

Program: M. Sc. in Physics	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Advanced Project on Experimental Design	Subject Code: TIU-PPH-L208
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Apply formulated designs to develop and evaluate functional prototypes.
- 2. Analyze experimental outcomes to enhance and iterate on selected designs.
- 3. Incorporate developed experiments into graduate and undergraduate courses.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Arrange formulated designs to create and test prototypes.	K1
CO-2:	Analyze prototype performance through structured testing.	K4
CO-3:	Evaluate prototypes based on experimental results.	К6
CO-4:	Devise developed experiments for educational purposes.	K5
CO-5:	Prepare technical reports and present research outcomes.	К6
CO-6:	Evaluate the significance of developed prototypes in research and education.	К6

COURSE CONTENT:

MODULE 1:	CONCEPTUALIZATION AND IMPLEMENTATION OF RESEARCH IDEA	48 Hours					
Introduction to design thinking in science & engineering. Identification of research/educational gaps. The design formulated will be employed to produce and test prototypes, refine and iterate on the selected design. Tools for prototyping: hardware, software, fabrication basics. Safety standards and considerations							
		40.11					
MODULE 2:	SCIENTIFIC COMMUNICATION AND RESEARCH IMPACT	12 Hours					
Technical Report Writing. Poster and oral presentations. Ethics in research and publication							
The experiments that are developed are incorporated within the graduate and undergraduate curriculum.							
	_						
TOTAL HOURS	5	60 Hours**					

COs	P01	P02	P03	P04	P05	P06	P07	P08	PSO1	PSO2	PSO3
CO-1	3	2	3	2	-	3	-	-	-	2	3
CO-2	3	3	2	3	-	-	-	-	-	2	3
CO-3	3	3	2	3	-	-	-	-	-	2	3
CO-4	3	2	3	2	2	-	-	-	-	2	3
CO-5	3	2	2	2	3	3	-	-	-	2	3
CO-6	3	2	2	3	2	-	-	-	-	2	3
Average	3	2.33	2.33	2.50	2.33	3	0	0	0	2	3