

Program: B. Sc. Biotechnology	Year, Semester: 1 st Yr., 1 st Sem.	
Course Title: Biochemistry and Metabolism	Subject Code: TIU-UBT-MJ-T11101	
Contact Hours/Week : 3-1-0(L–T–P)	Credit: 4	

Course Objective:

1. Understanding Fundamental Biochemical Principles

Introduce students to core concepts of biochemistry, including pH, buffers, and thermodynamic principles such as entropy, enthalpy, and Gibbs free energy, to establish a foundation for biochemical reactions and cellular processes.

2. Exploring Biomolecular Structure and Function

Provide in-depth knowledge of the composition, structure, and function of key biomolecules, including nucleic acids, proteins, carbohydrates, lipids, hormones, and vitamins, with an emphasis on protein folding, motifs, and enzyme mechanisms.

3. Comprehending Metabolic Pathways and Energy Flow

Analyze major metabolic pathways, including carbohydrate metabolism (glycolysis, citric acid cycle, oxidative phosphorylation), lipid, amino acid, and nucleotide metabolism, as well as photosynthesis, to understand energy production and biomolecular synthesis in living systems.

CO Number	Course Outcomes	Knowledge Levels
CO-1:	Explain the Fundamental Principles of Biochemistry- Understand the concepts of pH, buffers, and thermodynamic principles such as entropy, enthalpy, and Gibbs free energy, and their significance in biochemical reactions.	K2
CO-2:	Identify and Describe Biomolecular Structures Recognize and recall the composition, structure, and function of biomolecules (nucleic acids, proteins, carbohydrates, lipids, hormones, and vitamins), including protein folding and molecular interactions.	(K1, K2)

COURSE OUTCOME :

TECHNO INDIA UNIVERSITY WESTBENGAL

CO-3:	Analyze Protein Structure-Function Relationships Examine structural features such as the Ramachandran plot, motifs, and folding patterns of proteins like Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase, and Chymotrypsin to understand their biological roles.	K4
CO-4:	Illustrate Key Metabolic Pathways Apply knowledge of carbohydrate metabolism (glycolysis, citric acid cycle, oxidative phosphorylation), lipid, amino acid, and nucleotide metabolism to explain energy production and biosynthesis.	К3
CO-5:	Evaluate Photosynthesis and Bioenergetics (K4) Analyze the mechanisms of photosynthesis and the role of metabolic pathways in energy transformation and storage in biological systems.	K4
CO-6:	Relate Biochemical Concepts to Biotechnology Applications (K3, K4) Apply biochemical principles to biotechnology, including enzyme kinetics, metabolic engineering, and biomolecular interactions, to solve real-world biological problems.	K3 , K4

COURSE CONTENT :

MODULE 1:	20 Hours	
Introduction to biochemistry: pH, buffer, classical thermodynamics, entropy, enthalpy, Gibbs		
free energy.		
MODULE 2:	20 Hours	
Unit II: Structure function of biomolecules: Composition, structure and functi	on of	
biomolecules: nucleic acids (A, B, Z forms), amino acids, proteins (Ramachandr	an plot, folding	
secondary, tertiary and quaternary structure; domains; motif and folds (Myoglob	in, Hemoglobin,	
Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin), carbohydrates, lipids,		
hormones and vitamins.		
MODULE 3:	20 Hours	
Unit III: Metabolism of biomolecules: Metabolism: carbohydrates (glycolysis, citric acid cycle		
and oxidative phosphorylation, lipid, amino acid and nucleotide metabolism, photosynthesis.)		
TOTAL LECTURES60 Hours		

Department of Chemistry

Program: B.Sc. Biotechnology	Year, Semester: Ist year., 1 st Sem.	
Course Title: Chemistry-I	Subject Code: TIU-UCH-MI-T11101	
Contact Hours/Week: 3-0-0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Understand the basic concept of structure of atom, covalent bonding, non covalent bonding thermodynamics, chemical kinetics ionic equilibria, nomenclature, stereochemistry, structures, reactivity, and mechanism of chemical reactions.

Apply the concept of thermodynamics, chemical kinetics, and ionic equilibria, in the relevant advanced and emerging field of biotechnological studies.

Apply the concept of covalent and non covalent bonding, in acquiring information regarding the metals used in any process of biotechnological system.

Remember the knowledge of stereochemistry and reaction mechanism in understanding the glimpse of the reaction pathways involved in the biotechnology process.

Understand the concept of various types of bonding, energy distributions in atomic and molecular orbital makes the student easier to understand the technology based on them.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Understand the basic structure of an atom, dual nature of the subatomic particles, quantum mechanical model of the atom and shape of <i>s</i> , <i>p</i> , <i>d</i> , <i>f</i> orbital's which are basics of the bonding theories required to explain the properties of molecules and matters, the laws of thermodynamics and other thermodynamic parameters to explain conversion of heat into work and vice-versa, feasibility of a process, the factors which affect speed of chemical reactions and various methods to measure the rate of reactions that are relevant to the study of biological processes.	K2
CO-2:	Understand the different types of bonding (covalent, ionic, metallic, and weak interactions) and development of theories to explain the differences in properties of various types of molecules and matters.	K2

CO-3:	Understand the structural aspects of organic molecules and key factors required to explain stability and properties	K2
CO-4:	Remember the three-dimensional structure of organic molecules in various ways. They will also learn structure property correlation to explain two important properties of organic compounds which are optical activity and chirality.	K1
CO-5:	Understand the differences in properties of the three states of matter in terms of atomic hypothesis. They will also learn deviation of behaviour of real gas from the ideal one.	K2
CO-6:	Apply the laws of thermodynamics and other thermodynamic parameters to explain conversion of heat into work and vice-versa, feasibility of a process, the factors which affect speed of chemical reactions and various methods to measure the rate of reactions etc.	K3

COURSE CONTENT: -----

MODULE 1:		15 Hours	
1.	ATOMIC STRUCTURE		
Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics, de Broglie			
hypothesis, Heisenl	hypothesis, Heisenberg's uncertainty principle. Schrödinger equation. Hydrogen and hydrogen like systems		
	required). Radial and angular parts of wave function, quantum numb		
	nsion to multi electronic systems. Aufbau principle and its limitation	s, Pauli's exclusion	
principle, and Hund	l's rules of maximum multiplicity.		
2	COVALENT BONDING		
	SEPR theory, shape and polarity of simple molecules and ions, Valen		
	ation and shale of molecules. Molecular orbital theory, MO diagram	n of homonuclear and	
	& NO) diatomic molecules, HOMO, LUMO, Bond order.		
3	NON COVALENT BONDING		
	General characteristics of ionic compounds. Ionization energy, electric		
	r cycle. (ii) Metallic Bonding: Theories of bonding in metals. Band	theories. (iii) Weak	
Interactions: Hydr	ogen bonding and van der Waal's interactions.		
MODULE 2:		15 Hours	
1.	FUNDAMENTALS OF ORGANIC CHEMISTRY		
Types of organic re	actions, Inductive effect, resonance and hyper conjugation. nucleoph	iles and electrophiles	
2.	BONDING IN ORGANIC MOLECULES		
	zation and formation of single, double and triple bonds, Resonance and		
Qualitative idea abo	out molecular orbital's, bonding and anti bonding molecular orbital's	s, idea of σ , σ^* , π , π^* ,	
nonbonding MOs, o	concept of HOMO, LUMO and SOMO. Hückel's rules of aromaticity	y, anti aromaticity	
and non-aromaticity	у.		
	STEREOCHEMISTRY		
• -	somerism. Concept of chirality and optical activity (up to two carbon		
conversion of Fischer and Newman representations. Enantiomers, diastereomers, and meso compounds.			
<i>Threo/ erythro</i> , D/ L, <i>cis/ trans</i> , and E/ Z nomenclature. CIP Rules: <i>R/S</i> (only one chiral carbon atoms)			
nomenclature			

MODULE 3: 15 Hours GASSEOUS STATE Kinetic theory of gases, ideal gas laws based on kinetic theory. Collision in a gas, mean free path, collision diameter, collision number. Behaviour of real gases, the van der Waal's equation. Critical phenomena, critical constants of a gas and their determination, the van der Waals equation and critical state, Principle of corresponding states THERMODYNAMICS First Law of thermodynamics. State and path functions, sign convention for heat and work, nature of work. Internal energy, enthalpy, heat changes at constant volume and constant pressure, heat capacities (C_V, C_P) and their relationship for ideal gases. Thermodynamic quantities ($w, q, \Delta U, \Delta H$) for isothermal and adiabatic reversible expansion of ideal gases and their comparison. Change in internal energy (ΔU) and enthalpy (ΔH) of chemical reactions, relation between ΔU and ΔH . Concept of entropy, calculation of entropy changes. Gibbs free energy, its measurement and its application in prediction of spontaneity of a process. Variation of heat of reaction with temperature (Kirchhoff's equation). **CHEMICAL KINETICS** 3. Order and molecularity of chemical reactions. Rate laws for zero, 1st and 2nd order reactions and in general for any nth order reaction. Determination of order of a reaction by half-life and differential methods. Effect of temperature on rate, arrheninus equation. Rate determining step and steady state approximation. Opposing, consecutive and parallel reactions (first order steps only). Enzymatic reactions TOTAL LECTURES **45 Hours**

Department of Computer Application

Program: BSc Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Introduction to Computer Applications	Subject Code: TIU-UCA-MD-T11101
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

- 1. To introduce the basic concepts and functions of computers and their relevance in biotechnology.
- 2. To develop understanding of number systems and their applications in computing
- 3. To impart foundational knowledge of programming in C and R languages
- 4. To familiarize students with software types, flowcharts, and algorithmic approaches.
- 5. To enhance problem-solving and logical thinking abilities through programming exercises

Course O	utcomes:
----------	----------

CO	Course Outcome	Knowledge
Number		Level
CO1	Describe the basic architecture and functioning of a computer system.	K1
CO2	Convert and perform operations using binary, octal, decimal, and hexadecimal number systems.	K2
CO3	Classify software into system and application software and explain their roles.	K2
CO4	Develop and debug basic programs using R programming languages.	К3
CO5	Demonstrate use of control structures to solve real-life problems programmatically.	K3
CO6	Construct logic-based solutions and represent them using flowcharts and pseudocode.	K4

Course Content

Module	Topics	Hours
1	Definition and Characteristics of Computers, Block Diagram,	7
	Types of Computers, Basic Hardware: CPU, RAM, Storage	
	Devices	
2	Binary, Octal, Decimal, Hexadecimal Systems, Conversions,	6
	Binary Arithmetic, 2, Äôs Complement	
3	System Software vs Application Software, Examples, Booting	4
	Process, Programming Languages (Low-level and High-level)	
4	Flowcharts, Pseudocode, Problem Solving Strategies	8
5	Basics of R, Data Types, Variables, Simple Programs	20
	(sequence, selection, iteration), list, function	20
Total Hou	rs	45 hours

Department of English

Program: BSc Biotechnology	Year, Semester:1st Year, 1st Sem
Course Title: Communicative English- I	Subject Code: TIU-UEN-AEC-S1101
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

Develop English proficiency for clear, precise, and confident workplace communication. Enhance practical skills in vocabulary, grammar, pronunciation, speaking, and writing. Apply communication theories to improve professional and interpersonal interactions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Explain fundamental communication principles and their relevance in workplace interactions.	K2
CO-2:	Apply grammar and language skills to construct precise and coherent spoken and written communication.	K3
CO-3:	Demonstrate fluency in spoken English through pronunciation drills, vocabulary building, and interactive conversations.	K4
CO-4:	Construct well-organized sentences, paragraphs, and linked paragraphs to enhance professional writing	K3
CO-5:	Develop and revise written communication by employing strategies for drafting, editing, and proofreading.	K3
CO-6:	Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.	K4

COURSE CONTENT :

MODULE	INTRODUCTION TO COMMUNICATION 5 Hours		
1:			
Definition of Communication, Importance of Communication in the Workplace, Introduction to			
Communication Theory, Elements of Effective Communication, Barriers to Communication,			
Verbal and Non-Verbal Communication, Role of Culture in Communication.			
MODULE	LANGUAGE AND GRAMMAR SKILLS	5 Hours	
2:			

Fundamentals of English Grammar, Sentence Structure and Syntax, Parts of Speech, Tenses and their Usage, Common Errors in Grammar, Punctuation and Mechanics, Effective Use of Vocabulary, Word Formation and Usage, Formal vs. Informal Language.

MODULE 3:	SPEAKING SKILLS	5 Hours
Principles of E	Effective Speaking, Pronunciation Drills, Sounds of English: Vowels	and
-	tress and Intonation, Developing Conversational Skills, Speaking wi	
	ublic Speaking Basics, Expressing Opinions and Arguments, Active	
Response.		U
•		
MODULE	WRITING SKILLS	5 Hours
4:		
The Writing P	rocess: Planning, Drafting, Revising, Editing, Writing Effective Sent	ences and
Paragraphs, Pa	ragraph Development and Coherence, Formal and Informal Writing	Styles,
Writing Email	s and Workplace Documents, Writing Reports and Memos, Common	n Writing
Errors and Ho	w to Avoid Them	
MODULE	PRACTICAL LANGUAGE APPLICATION	5 Hours
5:		
0	bulary through Context, Word Choice and Precision, Constructing C	•
	ices, Exercises in Sentence Formation, Pronunciation Drills and Acc	
	, Role-Plays and Dialogues, Group Discussions and Debates, Writing	g and
Structuring Pa	ragraphs, Linking Paragraphs for Coherent Writing.	
MODULE	PROFESSIONAL COMMUNICATION IN THE	5 Hours
6:	WORKPLACE	
	mmunication Etiquette, Business Correspondence, Writing Professio	
	entations, Communicating in Meetings, Handling Workplace Conve	
	Negotiation Skills, Overcoming Communication Barriers, Strategie	s for
	kplace Communication.	
TOTAL LEC	TURES	30 Hours

Department of BiotechnologyProgram: B. Sc. BiotechnologyYear, Semester: 1 st Yr., 1 st Sem.		
Course Title: Environmental Science	Subject Code: TIU-UBT-CVA-T1101	
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2	

Course Objective: 1. Develop a Foundational Understanding of Environmental Science

Introduce students to the scope, importance, and need for environmental education, emphasizing sustainability and sustainable development.

2. Explore Ecosystem Dynamics and Biodiversity Conservation

Provide knowledge about ecosystem structure, energy flow, nutrient cycling, ecological interactions, and biodiversity conservation, including threats and protection strategies.

3. Analyze Environmental Issues and Sustainable Solutions

Examine major environmental challenges such as pollution, climate change, biodiversity loss, and waste management while evaluating their impacts and potential mitigation strategies.

CO No.	Course Outcome	Knowledg e Levels
CO1	Explain the scope and importance of environmental science, sustainability, and sustainable development.	K2
CO2	Describe ecosystem structure, food chains, food webs, energy flow, nutrient cycling, and ecological succession.	K1
CO3	Analyze biodiversity at genetic, species, and ecosystem levels, identify biodiversity hotspots, and assess conservation strategies.	K4
CO4	Assess environmental issues such as pollution, climate change, ozone depletion, and acid rain, and their impacts on human communities.	K3
CO5	Investigate human-wildlife conflicts, biodiversity conservation, and policies related to tribal rights and nature reserves in India.	K3, K4
CO6	Evaluate waste management strategies, including e-waste and biomedical waste, and analyze environmental disasters and their consequences.	K4

COURSE OUTCOME :

COURSE CONTENT :

MODULE				5 Hours
1:				
	roduction to envi	ironmental science- environmen	tal studies: Scope	and
		nmental education. Concept of su		
development.		I I I I I I I I I I I I I I I I I I I		
MODULE				8 Hours
2:				
What is an eco	system? Structure	e: food chains, food webs and fun	ction of ecosysten	n:Energy
		ycle and ecological succession. E		
studies of the f	ollowing ecosyste	ems: a) Forest ecosystem b) Grass	sland ecosystem c) Desert
ecosystem d) A	Aquatic ecosystem	ns (ponds, streams, lakes, rivers, o	oceans, estuaries)	
MODULE 3:				8 Hours
Biodiversity a	nd Conservation	a Levels of biological diversity:	genetic, species a	nd ecosystem
diversity; Biog	eographic zones o	of India; Biodiversity patterns and	d global biodiversi	ity hot spots
b. India as a m	ega-biodiversity r	nation; Endangered and endemic	species of India c.	Threats to
		ing of wildlife, man-wildlifeconf		
	•	situ and Ex-situ conservation of l	•	
		yamgiri-Vedanta, POSCO), and l		
Indian context	(Sundarban-Hum	an-Tiger encounters). e. Ecosyste	em and biodiversit	y services:
Ecological, eco	onomic, social, eth	hical, aesthetic and Informational	value.	
Module 4			9 hours	
	0	issues: Environmental pollution:	• 1	
		ise pollution. b. Climate change, g		
depletion, acid rain and impacts on human communities and agriculture c. Nuclear hazards and				
		3 mile Island, Daiichi- Fukushim		-
Control measures of urban and industrial waste, special reference to e-waste, Biomedical				
waste. [1] e. Pollution Tragedies: Love canal, Bhopal Gas, Endosulfan, Minamata and Flint water				
	NUDEG			20.11
TOTAL LEC	IUKES			30 Hours

Program: B. Sc. in Biotech	Year, Semester: 1 st Yr., 1st Sem.
Course Title: BIOCHEMISTRY AND METABOLISM LAB	Subject Code: TIU-UBT-MJ-L11101
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

To introduce students to fundamental biochemical laboratory techniques, including enzyme activity assays, colorimetry, and chromatography, for analyzing biological molecules.

To develop an understanding of enzyme kinetics by studying the effects of pH, temperature, substrate concentration, and inhibitors on enzyme activity.

To equip students with practical skills in biomolecule estimation, buffer preparation, and qualitative biochemical tests for carbohydrates, lipids, and proteins, enabling accurate biochemical analysis.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recollect the fundamental principles of enzyme activity and demonstrate the optimal conditions required for enzymatic reactions.	K1
CO-2:	Explain the impact of pH and temperature on enzyme kinetics using salivary amylase as a model system.	K2
CO-3:	Apply enzyme kinetics principles by determining pH optima, temperature optima, Km, Vmax, and the effect of inhibitors on enzyme activity.	К3
CO-4:	Analyze biochemical parameters such as blood glucose levels using the glucose oxidase method and interpret the results.	K4
CO-5:	Perform colorimetric estimations of biomolecules (proteins, carbohydrates) and verify Beer's law to understand the relationship between absorbance and transmission.	К3
CO-6:	Evaluate different biochemical separation techniques such as buffer preparation, paper chromatography for amino acid separation, and qualitative tests for macromolecules	K4

Course Content	
ExperimentTo study activity of any enzyme under optimum conditions.	
To study the effect of pH, temperature on the activity of salivary amylase enzyme Determination of - pH optima, temperature	
optima, Km value, Vmax value, Effect of inhibitor (Inorganic phosphate) on the enzyme activity.	
Estimation of blood glucose by glucose oxidase method	TOTAL (56 HOURS)
Principles of Colorimetry: (i) Verification of Beer's law, estimation of protein. (ii) To study relation between absorbance and % transmission	
Preparation of buffers.	
Separation of Amino acids by paper chromatography.	
Separation of Amino acids by paper chromatography.	

Department of Chemistry

Program: B.Sc. Biotechnology	Year, Semester: Ist year., 1 st Sem.
Course Title: Chemistry Lab	Subject Code: TIU-UCH-MI-L11101
Contact Hours/Week: 0-0-2 (L–T–P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

- 1.Understand the safety protocol and adhere to the best laboratory practical purpose
- 2.Understand the chemical nature of the hazardous chemicals.
- 3.Understand the basic analytical technique
- 4. Apply the basic analytical technique for real time analysis
- 5. Analyze the result obtained post performance of the experiment

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Understand the safety protocols, and practice the best practices inside a chemistry lab.	K2
CO-2:	Understand the nature of various types of reagents and their handling as well as storage.	K2
CO-3:	Analyze the functional groups present in organic molecules by simple reactions	K4
CO-4:	Understand the basics of analyzing various types of organic compounds and their properties.	K4
CO-5:	Understand the basic analytical techniques, such as preparation solutions of desired strength, standardization of solutions and analysis of concentration of the species (chemicals, metal ions, active ingredients etc.) present in unknown samples using titrimetric and volumetric method.	K2
CO-6:	Apply the basic analytical techniques, such as preparation solutions of desired strength, standardization of solutions, and analysis of concentration of the species in the real time analysis.	К3

COURSE		
EXPERIMENT-1:	Qualitative Analysis (Organic and Inorganic):	Total duration -30 hours
 (i) Detection of elements (X, N, S) in organic compounds. [X = Cl, Br, I] (ii) Detection of functional groups: COOH, C=O, CHO, Ar–OH, Ar–NH₂, Ar–NO₂, CONH₂ (iii) <i>Qualitative Inorganic Mixture Analysis:</i> Anions, interfering anions, cations and insolubles. 		
EXPERIMENT-2:	Quantitative Analysis (Physical and Volumetric):	
Standardization of Na (ii) Estimation of avai (iii) Determination of r (iodine clock reaction		

Department of Biotechnology		
Program: B. Sc. Biotechnology	Year, Semester: 1 st Yr., 1 st Sem.	
Course Title: Instrumentation Technique-I	Subject Code:TIU-UBT-SEC- T1101	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3	

Course Objective:

1. Develop Fundamental Laboratory Skills

Introduce students to essential laboratory techniques, including aseptic methods, microscopy, centrifugation, and spectrophotometry, to ensure accuracy and precision in biotechnological research.

2. Understand Molecular Biology Techniques

Provide knowledge of nucleic acid isolation, gel electrophoresis, PCR, restriction digestion, ligation, and blotting techniques, with a focus on their applications in genetic analysis and biotechnology.

3.Explore Biochemical and Analytical Techniques

Familiarize students with chromatography, protein purification, and enzyme assays, enabling them to analyze biomolecules and study biochemical processes relevant to biotechnology applications.

COURSE OUTCOME :

CO	Course Outcome	
No.		
CO1	Demonstrate knowledge of aseptic techniques, sterilization methods, and media preparation for microbiological and biochemical experiments.	K1,K2
CO2	Perform microscopy techniques, including sample preparation, staining, and visualization using different types of microscopes.	K3
CO3	Utilize centrifugation and spectrophotometry techniques to analyze biomolecules and biochemical samples.	К3
CO4	Execute molecular biology techniques such as nucleic acid isolation, gel electrophoresis, PCR, for DNA and protein analysis.	K3 , K4
CO5	Apply chromatography and protein purification techniques for biomolecule separation and characterization in biotechnological applications.	K3, K4
CO6	Conduct enzyme assays to determine enzyme kinetics and biochemical reactions using spectrophotometric and fluorometric methods.	K4

COURSE CONTENT : MODULE 1:	15 Hours	
Basic Laboratory Techniques	10 Hours	
Aseptic Techniques:		
Principles of aseptic technique		
Sterilization methods (autoclave, dry heat, filtration)		
Media preparation and sterilization		
Microscopy:		
Types of microscopes (light, phase contrast, fluorescence, ele	ectron)	
Sample preparation and staining techniques	<i>,</i>	
Microscopy techniques (bright field, dark field, phase contra	st, fluorescence)	
Centrifugation:		
Principles of centrifugation		
Types of centrifuges (low speed, high speed, ultracentrifuge)		
Applications of centrifugation in biotechnology		
Spectrophotometry:		
Principles of spectrophotometry		
Types of spectrophotometers (UV-visible, infrared)		
Applications of spectrophotometry in biotechnology		
MODULE 2:	20 Hours	
Nucleic Acid Isolation:		
Methods for DNA and RNA isolation		
Purification techniques (column chromatography, precipitation	on)	
Gel Electrophoresis:		
Principles of gel electrophoresis		
Types of gels (agarose, polyacrylamide)		
Applications of gel electrophoresis (DNA, RNA, protein)		
Polymerase Chain Reaction (PCR):		
Principles of PCR		
PCR components and optimization		
Applications of PCR (amplification, cloning, sequencing)		
Blotting Techniques:		
Southern blotting, Northern blotting, Western blotting		
Applications in molecular biology		
MODULE 3:	10 Hours	

Biochemical Techniques

Chromatography:

Principles of chromatography
Types of chromatography (column, thin layer, gas, liquid)
Applications in biotechnology (protein purification, metabolite analysis)
Protein Purification Techniques:
Dialysis, ultrafiltration, affinity chromatography, ion exchange chromatography, gel filtration chromatography
Enzyme Assays:
Principles of enzyme assays
Types of enzyme assays (spectrophotometric, radiometric, fluorometric)
Applications in biotechnology (enzyme kinetics, product analysis)

TOTAL LECTURES

45 Hours

Program: B. Sc. Biotechnology	Year, Semester: 1 st Yr., 2nd Sem.	
Course Title: Introduction to Microbiology	Subject Code: TIU-UBT-MJ-T12101	
Contact Hours/Week: 3-1-0(L–T–P)	Credit: 4	

Course Objectives:

1. Equip students with a foundational understanding of the diversity, structure, and function of microorganisms.

2. Explore the principles and techniques used for the cultivation, identification, and manipulation of microbes.

3. Develop an appreciation for the role of microorganisms in various fields like healthcare, industry, and the environment.

4. Foster critical thinking and problem-solving skills in the context of microbiological applications.

CO No.	Course Outcome	Knowledge levels
CO1	Explain the history, evolution, and classification of microorganisms, including microbial diversity and phylogeny.	K1 , K2
CO2	Describe the morphology, structure, and characteristics of prokaryotic and eukaryotic microorganisms, including viruses.	K2
CO3	Demonstrate knowledge of microbial cultivation, nutritional categories, and methods for isolation and preservation of microorganisms.	K2, K3
CO4	Analyze microbial growth, metabolism, and genetic mechanisms such as transformation, transduction, and conjugation.	K3 K4
CO5	Evaluate methods for controlling microorganisms using physical, chemical, and chemotherapeutic agents, and understand microbial roles in biogeochemical cycles.	K3 K4
CO6	Assess microbial applications in water and food microbiology, including bacterial pollutants, foodborne infections, and food preservation techniques.	K4

COURSE OUTCOME :

COURSE CONTENT :

MODULE		15 Hours
1:		
Fundamentals, History and Evo	lution of Microbiology. Classification of microor	ganisms:
Microbial taxonomy, criteria us	ed including molecular approaches, Microbial phy	ylogeny and
current classification of bacteria	a. Microbial Diversity: Distribution and characteri	zation
Prokaryotic and Eukaryotic cell	s, Morphology and cell structure of major groups	of
microorganisms eg. Bacteria, A	lgae, Fungi, Protozoa and Unique features of viru	ses.
MODULE 2:		10 Hours
Cultivation and Maintenance of	microorganisms: Nutritional categories of micro-	organisms,
methods of isolation and preser	vation of microbial culture.	
MODULE		15 Hours
3:		
6	e, Generation time, synchronous batch and contin	
e	tors affecting growth of bacteria. Microbial Metal	
1 1 1	abolic and biosynthetic pathways, Mutation, Bact	erial
Reproduction: Transformation,		
Module 4	20 hours	
Control of Microorganisms: By physical, chemical and chemotherapeutic Agents, Nitrogen,		
Phosphorus, Carbon sulphur cycle, Water Microbiology: Bacterial pollutants of water, coliforms		
and non-coliforms. Sewage composition and its disposal. Food Microbiology: Important		
microorganism in food Microbiology: Moulds, Yeasts, bacteria. Major food-borne infections		
and intoxications, as well as the preservation of various types of foods. Fermented Foods.		
TOTAL LECTURES		60 Hours

Department of Chemistry

Program: B.Sc. Biotechnology	Year, Semester: Ist year., 2 nd Sem.	
Course Title: Chemistry-II	Subject Code: TIU-UCH-MI-T12101	
Contact Hours/Week: 3-0-0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

Understand the basic concept of structure of atom, covalent bonding, non covalent bonding thermodynamics, chemical kinetics ionic equilibria, nomenclature, stereochemistry, structures, reactivity, and mechanism of chemical reactions.

Apply the concept of thermodynamics, chemical kinetics, and ionic equilibria, in the relevant advanced and emerging field of biotechnological studies.

Apply the concept of covalent and non covalent bonding, in acquiring information regarding the metals used in any process of biotechnological system.

Remember the knowledge of stereochemistry and reaction mechanism in understanding the glimpse of the reaction pathways involved in the biotechnology process.

Understand the concept of various types of bonding, energy distributions in atomic and molecular orbital makes the student easier to understand the technology based on them.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Understand the underlying concepts of development of periodic table and learn to predict properties of elements by going through periodic variations of properties across the period and down the group. They will be able to use the periodic table to rationalize similarities and	K2
	differences of elements, including physical and chemical properties and reactivity.	
CO-2:	Understand the nature of metal-ligand bonding in complexes and prediction of various properties of complexes by ligand field theory. The will also be able to explain the structure, spectral and magnetic properties of coordination complexes using the theory.	K2
CO-3:	Analyze the physical and chemical properties of organic molecules to predict their reactivity,	
	nature of reactive intermediates, and various types of reaction mechanisms.	K2
CO-4:	Analyze several physical parameters controlling the organic transformations and comprehend the chemistry of numerous functionalized organic compounds.	K1

CO-5:	Understand two important properties of liquids which are viscosity, surface tension. They will also learn several factors that affect viscosity and surface tension of liquid and methods of their measurements.	K2
CO-6:	Remember the knowledge of analytical chemistry by learning nature of various types of electrolytes (acid, base, salt) in solution, measurement of their strength, preparation of buffers etc.	K3

COURSE CONTENT:

MODULE 1:		15 Hours
1.	PERIODIC TRENDS AND PROPERTIES	
(i) General idea about modern periodic table, Definition and trends of variation of atomic and ionic radii,		
ionization energy, e	electron affinity and electro negativity, Prediction of chemical behavi	our of elements and
compounds. (ii) Co	mparative study of p-block elements: Electronic configuration, con	mmon oxidation
states, inert pair eff	ect. Important compounds and their properties and reactivity's	
2	COORDINATION CHEMISTRY	
Werner's coordinat	ion theory. Structural and stereoisomerism in complexes, Drawbacks	of VBT.
3	VBT AND LIGAND FIELD THEORY	
Valence Bond The	bry (VBT), inner and outer orbital complexes. Ligand field effect, spl	itting of d orbitals in
octahedral and tetra	hedral complexes, Factors affecting the magnitude of splitting, spect	rochemical series,
crystal field stabiliz	zation energy (CFSE). Distortion in octahedral and tetrahedral geome	tries, Jahn-Teller
theorem. Splitting of	of d orbitals in square planar complex.	
MODULE 2:		15 Hours
1.	SUBSTITUTION ELIMINATION AND ADDITION	
	REACTIONS	
Carbocations, non-	classical carbocations, carbanions, carbon radicals, generation and sta	ability, structure and
electrophilic / nucle	eophilic behaviour of reactive intermediates (elementary idea). Nucle	ophilic substitutions:
$S_N 1$, $S_N 2$ and $S_N i$ re	eactions. Eliminations: E1, E2 and E1cB reactions (elementary mecha	anistic aspects),
Saytzeff and Hofm	ann eliminations. Electrophilic and nucleophilic addition reactions of	unsaturated
hydrocarbons and c	carbonyls	
2.	AROMATIC ELECTROPHILIC SUBSTITUTION	
Mechanism of nitra	tion, halogenation, sulphonation, and Friedel-Crafts (alkylationa and	acylation) reactions.
	nts on orientation and reactivity.	
3.	PHYSICAL ORGANIC CHEMISTRY	
Free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE,		
	tramolecular reactions. Rate constant and free energy of activation, f	
for one-step, and tw	vo-step reactions. Catalyzed reactions, principle of microscopic rever	sibility. Hammond's
postulate. Halogena	ation of alkanes, mechanism (with evidence) and stereo chemical feat	ures. Reactivity-
	e in the light of Hammond's postulate.	
MODULE 3:		15 Hours
	LIQUID STATE	
	iquids - capillary action, experimental determination of surface tensi	-
on surface tension.	Viscosity of liquids, experimental determination of viscosity coefficient	ent, its variation with

temperature

IONIC EQUILIBRIA

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases. pH scale. Common ion effect. Salt hydrolysis, calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts, applications of solubility product principle.

3.

BIOMOLECULES

Amino acids, peptides and proteins: Amino acids (Nature, Chemical reaction, Detection and Configuration);Peptides (The Peptide Linkage, Structure of Polypeptides); Proteins (General Characteristics, Classification,
Structure). Carbohydrate: Introduction, occurrence, classification, constitution of glucose, osazone formation.
Brief descriptions of lipids, fats and nucleic materials (DNA, RNA).TOTAL LECTURES45 Hours

Program: B. Sc. Biotechnology	Year, Semester: 1st Yr., 2 ND Sem.
Course Title: Data Science	Subject Code: TIU-UBT-MD-T12101
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

Course Objectives:

1. To introduce students to the fundamental concepts of bioinformatics, biocomputing, and biological databases, including their structure, retrieval methods, and applications.

2. To equip students with the knowledge and skills required for sequence analysis, structural bioinformatics, and computational techniques for studying biological macromolecules.

3. To provide an understanding of advanced bioinformatics techniques, including protein structure prediction, genome annotation, and AI/ML applications in bioinformatics.

Course Outcomes (COs)

CO	Course Outcome	Knowledge
No.		Levels
CO1	Define and explain the fundamentals of bioinformatics, biocomputing,	K1,K2
	and the role of AI, ML, and data science in biological data analysis.	
CO2	Identify and retrieve biological data from various databases (FASTA,	K2, K3
	GenBank, PDB) and understand data storage formats.	
CO3	Perform sequence analysis using pairwise/multiple sequence alignment,	K3
	BLAST, FASTA, and scoring matrices (PAM, BLOSUM) for	
	phylogenetic studies.	
CO4	Analyze protein structures, including folding mechanisms and molecular	K3,K4
	docking, using computational tools.	
CO5	Evaluate protein structure prediction methods such as Chou-Fasman,	K4
	homology modelling, and AI-based tools like AlphaFold.	
CO6	Apply bioinformatics approaches for genome annotation, gene prediction,	K3, K4
	and promoter identification in prokaryotic and eukaryotic genomes.	

COURSE CONTENT :

MODULE 1:		15 Hours		
Introduction to	o Bioinformatics, Biological Databases and Basics of AI, ML an	d Datacience		
Definition and s	scope of bioinformatics, similarities and differences between compu	utational		
biology and bio	biology and bioinformatics, and the concept of biocomputing. Historical perspective with key			
milestones in bi	milestones in bioinformatics. Overview of major types of biological databases, methods for			
retrieving and analyzing biological data, and understanding data formats such as FASTA,				
GenBank, and H	PDB. The role of artificial intelligence, machine learning, and data s	science in		

TECHNO INDIA UNIVERSITY WESTBENGAL

bioinformatics and their importance in managing, analyzing, and interpreting biological data.				
MODULE 2:				10 Hours
Sequence Anal	ysis			
Basics of nucleo	otide and protein	sequences, pairwise and multiple	sequence alignm	ent
techniques, phy	logeny, heuristic	c search tools like BLAST and FAS	STA, scoring mat	trices (PAM
and BLOSUM)	, and concepts of	f sequence similarity, identity, and	homology.	
MODULE 3:				10 Hours
Structural Bio	informatics			
Overview of an	nino acid types, j	protein structures (primary, second	ary, tertiary, and	quaternary),
protein folding	mechanisms, and	d the fundamentals of docking and	molecular dynar	nics
simulations.				
Module 4	Module 4 10 hours			
Advanced Techniques in Bioinformatics				
Protein structure prediction techniques including the Chou-Fasman algorithm, homology				
modeling, and threading. Discussion of 3D structure prediction methods like AlphaFold, as well				
as in silico approaches for genome annotation, including gene and promoter prediction for				
prokaryotes and	prokaryotes and eukaryotes, along with performance evaluation methods.			
TOTAL LECT	URES			45 Hours

Department of English

Program: BSc Biotech	Year, Semester:1st Year, 2nd Sem
Course Title: Communicative English- II	Subject Code:TIU-UEN-AEC-S1201
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

Develop fluency in spoken and written English for clear, precise, and confident communication. Train in formal writing, reports, proposals, and multimedia presentations.

Strengthen people skills, time management, and analytical reading for workplace success.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO- 1:	Explain fundamental communication principles and assess their relevance in workplace interactions.	K2
CO- 2:	Apply grammar and language skills to construct precise and coherent spoken and written communication	К3
CO- 3:	Demonstrate fluency in spoken English through practicing pronunciation drills, developing vocabulary, and engaging in interactive conversations.	K4
CO- 4:	Construct well-organized sentences and paragraphs to enhance professional writing.	K3
CO- 5:	Develop and revise written communication by employing strategies for drafting, editing, and proofreading	K3
CO- 6:	Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.	K4

Course conte

MODULE	COMMUNICATION THEORY AND WORKPLACE	5 Hours			
1:	DYNAMICS				
Definition of C	Definition of Communication, Communication Models, Workplace Communication Strategies,				
Effective Mess	Effective Messaging, Organizational Communication, Cultural Communication, Verbal and				
Non-Verbal Cues, Barriers to Communication, Interpersonal and Group Communication					
MODULE	ADVANCED LANGUAGE AND GRAMMAR	5 Hours			
2:	PROFICIENCY				
Morphology and Syntax, Sentence Structuring, Advanced Grammar Rules, Tense Modulation,					
Phrasal Verbs,	Modifiers, Cohesion and Coherence, Lexical Resource, Semantics,	Formal vs.			
Informal Regis	ster				

TECHNO INDIA UNIVERSITY WESTBENGAL

MODULE	STRATEGIC SPEAKING AND ORAL PROFICIENCY	5 Hours		
3:				
Phonetics and	Phonology, Pronunciation Refinement, Stress and Intonation, Artic	ulation and		
Clarity, Persua	sive Speaking, Argumentation and Debate, Spontaneous Speaking,	Interview		
Techniques, B	usiness Pitches, Active Listening Strategies	- <u>-</u>		
MODULE	PROFESSIONAL AND TECHNICAL WRITING	5 Hours		
4:				
Writing Proces	ss Methodologies, Text Structuring, Precision in Writing, Report W	riting,		
Business Prop	osals, Formal Correspondence, Executive Summaries, Editing and I	Proofreading,		
Technical Doc	umentation, Press Releases, Persuasive and Analytical Writing			
MODULE	APPLIED LANGUAGE AND COMMUNICATION	5 Hours		
5:	EXERCISES			
Lexical Expan	sion, Idiomatic Expressions, Context-Based Learning, Grammar in	Context, Role-		
Plays and Simulations, Speech Analysis, Storytelling Techniques, Collaborative Writing,				
Dialogues, Wo	Dialogues, Workplace Case Studies			
MODULE	CORPORATE COMMUNICATION AND LEADERSHIP	5 Hours		
6:	SKILLS			
Professional E	tiquette, Negotiation Tactics, Conflict Resolution, Crisis Communi-	cation,		
Leadership and	d Persuasion, Presentation Design, Cross-Cultural Communication,	Media and		
Public Relation	ns, Digital Communication Ethics, High-Stakes Conversations			
TOTAL LECTURES30 Hours				

Program: B. Sc. Biotechnology	Year, Semester: 1 st Yr., 2nd Sem.
Course Title: Industrial Fermentation	Subject Code:TIU-UBT-SEC-S1201
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Course Objectives:

- 1. To introduce the concepts and scope of industrial fermentation and microbial processes.
- 2. To familiarize students with microbial growth, bioreactor types, and process optimization.
- 3. To explore the role of fermentation in producing value-added products.
- 4. To understand strain improvement, product recovery, and scale-up challenges.

CO Code	Course Outcome Statement	Knowledge Level
CO1	Describe the basic concepts and classifications of industrial fermentation.	K1
CO2	Explain microbial growth phases, metabolic pathways, and fermentation process types.	К2
CO3	Apply microbial techniques for inoculum preparation and fermentation process setup.	К3
CO4	Analyze strain improvement strategies and evaluate environmental control in bioreactors.	K4
CO5	Evaluate the design of industrial fermentations for products like wine, antibiotics, and biofuels.	K4
CO6	Evaluate case studies and suggest improvements in industrial fermentation processes based on data analysis.	K4

Course Outcomes:

Course Content:

Module	Title	Course Content	Hours	Knowledge Level
Module 1	Fundamentals	Definition, history, and scope of	10	K1–K2
	of Industrial	industrial fermentation; Classification of	Hours	
	Fermentation	fermentation (batch, fed-batch,		
		continuous); Microbial growth kinetics		
		(lag, log, stationary, death phases);		
		Specific growth rate, yield coefficients.		
Module 2	Microbial	Metabolic pathways in industrial	10	K2–K3
	Metabolism &	microbes; Primary vs. secondary	Hours	
	Product	metabolites; Fermentation products:		
	Formation	enzymes, alcohols, acids, antibiotics,		
		etc.; Role of Acetobacter, Lactobacillus,		
		Saccharomyces, Penicillium		
Module 3	Bioprocess	Bioreactor types (stirred tank, airlift,	10	K2–K4
	Design and	packed bed); Inoculum preparation;	Hours	
	Optimization	Aerobic vs anaerobic fermentation;		
		Oxygen transfer, pH, temperature, and		
		nutrient optimization		
Module 4	Strain	Strain selection and genetic	7	K3–K4
	Improvement	improvement techniques; Recombinant	Hours	
	and Scale-Up	strains; Media composition and scale-up		
		strategies; Sterilization and		
		contamination control		
Module 5	Industrial	Case studies: Antibiotic production	8	K4–K4
	Applications	(Penicillin), Wine, Bread, Bioethanol,	Hours	
	and Case	Biodiesel; Industrial fermentation		
	Studies	economics; Current trends in		
		fermentation tech		

Program: B. Sc. Biotechnology	Year, Semester: 1 st Yr., 2nd Sem.
Course Title: Artificial Intelligence (AI)	Subject Code: TIU-UBT-CVA-S1201
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

Course Objective

To introduce basic concepts and terminology related to Artificial Intelligence.

To explain AI approaches like state-space search, constraint satisfaction, and genetic algorithms. To build an understanding of neural networks and AI applications in biology and biotechnology. **Course Outcomes:**

CO No.	Course Outcome Statement	Knowledge Level
CO1	Understand the concepts of AI and the role of agents in decision- making.	K2
CO2	Apply uninformed and informed search strategies to solve state-space problems.	К3
CO3	Analyze the design of genetic algorithms and their applications in optimization problems.	K4
CO4	Describe structure, functions, and applications of artificial neural networks.	K2
CO5	Illustrate constraint satisfaction problems using configuration search approaches.	К3
CO6	Solve fundamental AI problems using flow diagrams, graphs, and problem-solving strategies.	K4

Course Content:

Module	Title	Topics Covered
Module 1	Foundations of Artificial Intelligence	Definition and scope of AI, types of agents, problem formulation, state space graph vs search tree, production systems
Module 2	Search Strategies in AI	Uninformed search: BFS, DFS, Depth Limited Search, Iterative Deepening Search; Informed search: Heuristics, A*; Bidirectional search
Module 3	Genetic Algorithms & Constraint Satisfaction	Configuration search problems, Genetic Algorithm: Crossover and Mutation, Flow diagrams, Termination conditions, N-Queen problem
Module 4	Artificial Neural Networks	Structure and components of ANN, Feedforward and Feedback networks, Activation functions, Applications in AI
Module 5	Problem Solving and Applications	Solving classical problems: 8 puzzle, Missionaries & Cannibals; AI application examples; Neural network tasks
Module 6	Hands-on Practice & Evaluation	Practice in search strategy design, flow diagrams for GAs, ANN structure drawing, quiz, assignment, viva

Program: B. Sc. Biotechnology	Year, Semester: 1st Yr., 2 nd Sem.
Course Title: Microbial Physiology Lab	Subject Code: TIU-UBT-MJ-L12101
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 2

Course Objectives:

1. Provide students with hands-on experience in fundamental microbiological techniques.

2. Develop competency in aseptic techniques for safe handling of microorganisms.

3. Equip students with skills for isolation, cultivation, identification, and characterization of microbes.

COURSE	OUTCOME	:

CO No.	Course Outcome	Knowledge Level (K1– K4)
CO1	Identify and demonstrate the working principles of microbiology laboratory equipment.	K1,K2
CO2	Prepare culture media and explain its role in microbial growth and isolation.	K2,K3
CO3	Perform bacterial isolation using streak plating and analyze colony morphology.	K3
CO4	Conduct serial dilution and spread plating techniques to quantify bacterial populations.	K3
CO5	Perform Gram staining and interpret bacterial cell wall differences based on staining results.	K3 ,K4
CO6	Analyze bacterial growth patterns using a bacterial growth curve and biochemical characterization techniques.	K4

Course Content:

Module	Title	Course Content	Total
Experiment 1	Introduction to Microbiology Lab Equipment		60 Hours
	Demonstration and understanding of laminar flow hood, autoclave,		
	incubator, hot air oven,	, microscope, etc.	
Experiment 2	Culture Media Preparat	tion	
	Preparation of nutrient	broth, agar media, and selective media; media	
	pouring techniques and	l pH adjustment	
Experiment 3	Bacterial Isolation Tech	hniques	
_	Isolation of pure bacterial colonies using streak plating method		
Experiment 4	Quantification of Microbial Population		
	Serial dilution and spread plate method for viable bacterial count		
Experiment 5	Bacterial Staining Technique		
	Gram staining procedure, observation under microscope, and		
	interpretation of results		
Experiment 6	Microbial Growth Measurement		
	Determination of bacterial growth curve using spectrophotometry;		
	plotting of growth phases		
Experiment 7	Biochemical Characterization of Bacteria		
	IMViC tests, catalase, oxidase, starch hydrolysis, and other relevant		
	biochemical tests		

Department of Chemistry

Program: B.Sc. Biotechnology	Year, Semester: Ist year., 2 nd Sem.
Course Title: Chemistry Lab	Subject Code: TIU-UCH-MI-L12101
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

Understand the safety protocol and adhere to the best laboratory practical purpose

Understand the chemical nature of the hazardous chemicals.

Create an experimental procedure to perform reactions in order to synthesize important organic compounds and metal complexes.

Understand the characterization techniques such as melting point, UV-visible absorption etc.

Understand the basic analytical tool in order to prepare the solutions required for various types of titrimetric analysis

Apply the knowledge of analytical technique for the determination of exact strength of the solutions by using a primary standard.

COURSE OUTCOME:

On completion of the course, the student will be able to:

	netion of the course, the student will be use to:	1
CO-1:	Understand the safety protocols, and practice the best practices inside a chemistry lab.	K2
CO-2:	Understand the nature of various types of reagents and their handling as well as storage.	K2
CO-3:	Create an experimental procedure and perform reactions to synthesize important organic compounds and metal complexes	K4
CO-4:	Understand the preliminary characterization techniques such as melting point, UV-visible absorption etc.	K2
CO-5:	Understand the basic analytical techniques, such as Prepare the solutions required for various types of titrimetric analysis and determination of exact strength of the solutions by using a primary standard.	K2
CO-6:	Apply the analytical skills to estimate quantitatively various metal ions, inorganic elements, active ingredients etc. present in samples of various types.	K3

COURSE CONTENT

EXPERIMENT-1: Synthesis of metal complex Synthesis of a series of metal complexes (with ligands of varying ligand field strength), electronic spectral interpretation and calculation of various ligand- field parameters. Synthesis of metal complexes and determination of melting point, UV-vis absorption.	Total 30 hours
 EXPERIMENT-2: Preparation of Inorganic Compounds Standardization of Na₂S₂O₃ solution against standard K₂Cr₂O₇ solution. (ii) Estimation of available chlorine in bleaching powder. (iii) Determination of reaction rate of iodide with hydrogen peroxide in acidic medium (iodine clock reaction 	
EXPERIMENT-3: Preparation of Organic Compounds: m-dinitrobenzene, Acetanilide, Bromo acetanilide, Oxidation of primary alcohols-Benzoic acid from benzyl alcohol. Azo dye	
EXPERIMENT-4: Determination of surface tension of liquids. EXPERIMENT-5: Determination of viscosity coefficients of liquids. EXPERIMENT-6: Quantitative Analysis through titrations (Physical and Volumetric) Preparation of standard solution of oxalic acid and standardization of (a) NaOH solution and (b) KMnO4 solution.Estimation of Carbonate and bicarbonate present together in a mixture Estimation of acetic acid in commercial Vinegar. Preparation and standardization Mohr's solution by standard KMnO4 solution. Complexometric titrations: Zn^{2+} , Mg^{2+} , Ca^{2+} , Fe^{2+} with EDTA Estimation of total hardness of water by titration with EDTA Estimation of Fe(II) and Fe(III) in a given mixture using standard K2Cr2O7	

Department of Biotechnology		
Program: B.Sc. Biotechnology	Year, Semester: 2 ND year., 3 rd Sem.	
Course Title: Microbial genetics	Subject Code: TIU-UBT-MJ-T21201	
Contact Hours/Week: 3-1-0(L–T–P)	Credit: 4	

Course Objective

To introduce students to the fundamental concepts of microbial genetics, including genetic material, DNA structure, replication, plasmids, episomes, and microbial mutants. To develop an understanding of gene transfer mechanisms in bacteria such as transformation, transduction, and conjugation, and to explore their evolutionary significance and role in antibiotic resistance.

To equip students with knowledge of molecular mechanisms of mutation, DNA repair systems, and modern genetic tools like restriction enzymes and plasmid-based techniques used in microbial genetCourse Outcomes (COs)

CO No.	Course Outcome	Bloom's Level
CO1	Understand the basic principles and processes of microbial genetics, including plasmids, gene transfer mechanisms, and bacteriophages.	K1
CO2	Describe and explain different types of mutations and their genetic implications in microorganisms.	K2
CO3	Apply the knowledge of genetic elements and molecular techniques such as restriction enzymes, plasmids, and bacteriophages in microbial studies.	K3
CO4	Analyze microbial genetic experiments and interpret results to understand microbial variation and inheritance.	K4
CO5	Evaluate DNA damage and repair mechanisms, and assess tools like the Ames test for mutagenicity and carcinogenic potential.	K4
CO6	Illustrate DNA repair systems and demonstrate understanding through diagrams and models.	K3

Course content

Module	Topics Covered	
Module I	15 HOURS	
	Fundamentals of Microbial Genetics	
	- Definition and scope of microbial genetics	
	- Structure and replication of bacterial DNA	
	- Plasmids: types and functions	
	- Episomes	
	- Auxotrophic and other microbial mutants	
Module II	15 HOURS	
	Gene Transfer Mechanisms in Bacteria	
	- Horizontal gene transfer: definition and significance	

TECHNO INDIA UNIVERSITY WESTBENGAL

	- Transformation
	- Transduction (generalized and specialized)
	- Conjugation
	- Role in microbial evolution and antibiotic resistance
	- Bacteriophages: structure, lytic and lysogenic cycles
Module	15 HOURS
III	
	Mutations and DNA Repair Mechanisms
	- Types of mutations: point mutations, frame-shift mutations, etc.
	- Effects of mutations in microbes
	- Ames test for mutagenicity
	- DNA damage and repair mechanisms
	- Specific DNA repair systems (e.g., excision repair, photoreactivation)
Module	15 HOURS
IV	
	Molecular Tools in Microbial
	Genetics
	- Restriction endonucleases: types and mechanisms
	- Role of restriction enzymes in gene manipulation
	- Rolling circle replication
	- Application of plasmids and bacteriophages in molecular genetics
Total	60hours

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Biotechnology			
Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 3 RD Set	m.	
Course Title: Bioprocess Technology	Subject Code: TIU-UBT-MI-T21201		
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4		

. . .

- Course Objective:1. To introduce students to the fundamental principles of bioprocess technology, including fermentation types, microbial growth kinetics, and stoichiometry of cell growth.
- 2. To familiarize students with bioreactor design, operation, and process optimization, including key engineering parameters affecting microbial and cell culture systems.
- 3. To provide an understanding of sterilization methods and downstream processing techniques such as filtration, chromatography, and product formulation in bioprocessing.

0001		
CO	Course Outcome	
No.		
CO1	Understand the fundamental concepts of bioprocess technology, including	K1
	fermentation processes and microbial growth kinetics.	
CO2	Explain the design, classification, and operational parameters of different	K2
	bioreactors used in bioprocess industries.	
CO3	Apply knowledge of sterilization techniques and microbial death kinetics to	K3
	optimize bioprocessing conditions.	
CO4	Analyze the principles of upstream processing, including fermentation modes	K4
	and their impact on microbial growth.	
CO5	Evaluate different downstream processing techniques such as filtration,	K4
	centrifugation, chromatography, and product formulation.	
CO6	Demonstrate the ability to integrate bioprocess knowledge in designing	K3
	sustainable and efficient biotechnological production systems.	

MODULE 1:		15 Hours	
Basics of Bioprocess technology, Range of fermentation processes, Introduction to Upstream and downstream technology, Modes of fermentation: batch, fed-batch and continuous, Microbial growth kinetics- Monod kinetics, Solid state and submerged fermentation, Stoichiometry of cell growth- Respiratory Quotient, Degree of Reduction			
MODULE 2:		15 Hours	
designing paramet rheology of ferme and their applicati	and operation: Bioreactor parts and function, classification of re- ers for reactors (stirred tank reactor, airlift reactor, plug flow re- ntation broth, gas-liquid mass transfer, analysis of dimension le on (aeration number, power number and Reynold's number;	actor), ss parameters	
	n and filter sterilization, Batch and continuous sterilization, mic l, animal and plant cell culture platforms.	10 Hours probial death	
Module 4	20 hours		
Downstream processing- Cell disruption techniques, Filtration-Cross flow and dead end, ,centrifugation, membrane separation processes, precipitation, chromatography, product formulation and finishing techniques- drying and crystallizatio			
TOTAL LECTU	KES	60 Hours	

Department of Biotechnology

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 3 RD Sem.
Course Title:Library and Information Science	Subject Code: TIU-ULIB-MD-T2101
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Course Objective:

- 1. To introduce students to the foundational concepts of library science, including the types, roles, and functions of various libraries such as academic, public, national, and special libraries, with a focus on their historical and social importance.
- 2. To equip students with knowledge and skills related to digital libraries, library automation, classification and cataloguing systems, and the use of ICT and software in modern library management
- **3.** To develop students' understanding of different information sources and services, including reference tools, databases, digital repositories, and information organization systems to support academic and research activities.

CO Code	Course Outcome	Bloom's Level
CO1	Identify different types of libraries, their characteristics, and understand their roles in academic and societal development.	K1
CO2	Explain the organizational structure, functions, and services of academic, public, and national libraries, including major library acts and foundations.	K2
CO3	Apply the basic principles of library classification, cataloguing, and indexing to organize and retrieve information.	К3
CO4	Analyze the changing role of libraries in the digital era, and compare digital resources, repositories, and library consortia.	K4
CO5	Demonstrate understanding of library automation, integrated library systems, and the use of ICT tools and software like Koha, SOUL, and OPAC.	К3
CO6	Evaluate different information sources including reference tools, databases (e.g., Scopus, Web of Science), and their significance in academic research.	K4

Course Outcomes (COs)

MODULE 1:				
			10 Hours	
	Academic Librari	ies (School, College, University	Libraries), Role of Academic	
Libraries.				
	Types, Role of S	-		
-		c Libraries, Characteristics, Role	-	
Public Library S	tructure in India,	Public Library Act, Public Libra	ary Fund, State Central	
Library, Kolkata	l.			
	n Roy Library Fou			
National Library	, Characteristics,	, National Library of India, Histor	ry, Librarians, Functions,	
Books acquisition	on, Services, Colle	ection, Press and Registration of	Books Act, The Delivery of	
Books and New	spaper Act.			
Some Important	National and Inte	ernational Libraries.		
MODULE 3:			8 Hours	
Main Componen	•			
Five Laws of Li	•			
Dr. S. R. Ranga				
• •	· •	n Department, Technical Departm		
, 0	· ·	e Section, Rare Collection, Bindin	ng and Preservation.)	
Book Selection Procedure, Library Committee, Library Rules.				
	,	, <u>,</u>		
Accession Regis	ster, Secret Page,	Stock Verification, Weeding Out	t, Shelf List, Library Stack,	
	ster, Secret Page,	, <u>,</u>	t, Shelf List, Library Stack,	
Accession Regis Stack Access, A	ster, Secret Page,	Stock Verification, Weeding Out	· · · · ·	
Accession Regis Stack Access, A Module 4	ster, Secret Page, uthority File.	Stock Verification, Weeding Out	10 hours	
Accession Regis Stack Access, A Module 4 Classification, I	ster, Secret Page, uthority File.	Stock Verification, Weeding Out	10 hours	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC.	ster, Secret Page, uthority File.	Stock Verification, Weeding Out	10 hours assification Scheme, DDC,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu	ster, Secret Page, uthority File.	Stock Verification, Weeding Out	10 hours assification Scheme, DDC,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR.	ster, Secret Page, uthority File. Library Classificat rpose, 8 Areas of	Stock Verification, Weeding Out	10 hours assification Scheme, DDC,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu	ster, Secret Page, uthority File. Library Classificat rpose, 8 Areas of e, Interlibrary Loa	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification, Classificatio	10 hours assification Scheme, DDC,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch	Stock Verification, Weeding Out tion, Classification Language, Cl Cataloguing, Catalogue Code, E an, ISBN, ISSN. nain Indexing, POPSI, PRECIS.	10 hours assification Scheme, DDC, examples, AACR, RDA, ISBD,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie	ster, Secret Page, uthority File. Library Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification, Classificatio	10 hours assification Scheme, DDC, examples, AACR, RDA, ISBD,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System.	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. nain Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib	10 hours assification Scheme, DDC, examples, AACR, RDA, ISBD, raries.	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. ann ISBN, ISSN. bain Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib nagement Software, Examples- K	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applia Integrated Libra Library Automa Granthalaya, So	ster, Secret Page, uthority File. Library Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. and Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib nagement Software, Examples- K ibrary Management System, OPA	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC.	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar	ster, Secret Page, uthority File. Library Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. anin Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib nagement Software, Examples- K	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC.	
Accession Regis Stack Access, A Module 4 Classification, L UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference.	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. hain Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib hagement Software, Examples- K library Management System, OPA Code, Open-Source Software, Free	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software,	
Accession Regis Stack Access, A Module 4 Classification, L UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference.	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. and Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib nagement Software, Examples- K ibrary Management System, OPA	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software,	
Accession Regis Stack Access, A Module 4 Classification, L UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference. Library Services	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C	Stock Verification, Weeding Out tion, Classification Language, Classification Language, Classification Language, Classification Language, Classification Language, Classification, Catalogue Code, E an, ISBN, ISSN. hain Indexing, POPSI, PRECIS. Libraries, Benefits of ICT in Lib nagement Software, Examples- K ibrary Management System, OPA code, Open-Source Software, Free Reference Service, Currents Aw	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference. Library Services Module 5	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C s, Library OPAC,	Stock Verification, Weeding Out tion, Classification Language, Code, Code, Copen-Source Software, Examples- Kabrary Management System, OPA Code, Open-Source Software, Free Reference Service, Currents Aw	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference. Library Services Module 5 Data, Informatio	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C s, Library OPAC,	Stock Verification, Weeding Out tion, Classification Language, Code, Code, Copen-Source Software, Examples- Kabrary Management System, OPA Code, Open-Source Software, Free Reference Service, Currents Aw	10 hours assification Scheme, DDC, Examples, AACR, RDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software,	
Accession Regis Stack Access, A Module 4 Classification, I UDC, CC. Cataloguing, Pu FRBR. Union Catalogu Indexing, Index ICT, Key Applie Integrated Libra Library Automa Granthalaya, So Software, Binar Difference. Library Services Module 5 Data, Informatio	ster, Secret Page, uthority File. ibrary Classificat rpose, 8 Areas of e, Interlibrary Loa ing Language, Ch cations of ICT in ry System. tion, Library Mar ul, Choosing a Li y Code, Source C s, Library OPAC, on, Knowledge, W urces, Types.	Stock Verification, Weeding Out tion, Classification Language, Code, Code, Copen-Source Software, Examples- Kabrary Management System, OPA Code, Open-Source Software, Free Reference Service, Currents Aw	10 hours assification Scheme, DDC, assification Scheme, NDA, ISBD, raries. Koha, LibSys, Evergreen, AC, Importance of OPAC. eware, Commercial Software, vareness Service (CAS	

Sources, Electronic Sources, Selecting Information Sources. Encyclopaedias, Dictionaries, Directories, Biographical Sources, thesaurus, Bibliographies, Yearbooks. Printed and Digital Reference Sources. Database. Cloud Database, Types, Advantages, Example. Scopus, Key Features, Use. Web Of Science, Key Features, Use, Key Databases within WOS, Advantages. Bigdata, Characteristics, Applications, Challenges.

TOTAL LECTURES

45Hours

DEPARTMENT OF BIOTECHNOLOGY

Program: BSc in Biotech	Year, Semester: 2 ND Year, 3 rd Sem
Course Title: MODERN INDIAN LANGUAGE - HINDI	Subject Code: TIU-UEN-AEC-S2191A
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. To develop foundational knowledge of Hindi grammar and vocabulary, enabling students to construct simple sentences and engage in basic reading and writing tasks.
- 2. To enhance listening and speaking skills through interactive classroom activities, dialogues, and pronunciation practice, focusing on everyday conversational Hindi.
- 3. To introduce students to literary appreciation through two short stories and one poem in Hindi, fostering comprehension, discussion, and cultural understanding.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recognize and reproduce the Devanagari script accurately while reading and writing basic Hindi words and sentences.	K1
CO-2:	Apply basic Hindi grammar rules and vocabulary to construct simple, grammatically correct sentences.	K3
CO-3:	Demonstrate the ability to engage in short conversations using appropriate expressions, pronunciation, and sentence structures	K3
CO-4:	Interpret and explain the central ideas and themes of two selected short stories and one poem in Hindi.	K2
CO-5:	Analyze the use of language and cultural elements present in the literary texts to deepen appreciation of Hindi literature.	K4
CO-6:	Improve comprehension by responding to questions based on audio inputs and classroom discussions in Hindi.	K2

TECHNO INDIA UNIVERSITY WESTBENGAL

COURSE CONTENT :				
	मंत्र (कहानी): मुंशीप्रेमचंद	5 Hours		
इसकहानीकेमाध्यमसेविद्य	ार्थीमेंमानवतावादीमूल्योंकाविकासहोपाएगा।वेपरोपकार, न्याय, सेवाऔरकर्तव्यकीभावनाकोग्रहणकरपाएंगे			
MODULE 2:	त्रिशंकु (कहानी) : मन्नूभण्डारी	5 Hours		
इसकहानीकेमाध्यमसेविद्य	र्थीअपनेपुरानीपीढ़ीअर्थात्अपनेबड़ोंकाआदरकरनासीखपाएंगे।उनमेंनैतिकमूल्योंकाविकासहोसकेगा।नईऔरए	गुरानीपीढ़ीकेमध्य अंतर		
कोभीसमझानेकाप्रयासकि	याजाएगा।			
MODULE 3:	उनकोप्रणाम (कविता) : नागार्जुन	5 Hours		
इसकविताकेमाध्यमसेविद्य	ार्थीअपनेकर्तव्यऔरदायित्वकेप्रतिजिम्मेदारबनपाएंगे।उनमेंअपनेपरिवार, समाज,			
देशऔरविश्वकेप्रतिअपनेक	र्तव्यबोधकाएहसासहोसकेगा।			
	भिक्षुक (कविता) : सूर्यकांतत्रिपाठीनिराला	5 Hours		
इसकविताकेमाध्यमसेविद्य	र्थिबिबसऔरलाचारव्यक्तियोंकेप्रतिदयाभावरखपाएंगे।उनमेंसमाजकेसर्वहारावर्गकेप्रतिप्रेम,			
सेवाऔरअपनेपनकीभावन	ाकाविकासहोसकेगा।			
MODULE 5:	पारिभाषिकशब्दावली	5 Hours		
इसकेमाध्यमसेविद्यार्थीहिन	दीभाषाकेराजभाषास्वरूपकाअध्ययनकरपाएंगे।वेहिन्दीकेराजभाषाशब्दावलियोंकाकार्यालयीक्षेत्रमेंप्रयोगकरप	ाएंगे।		
MODULE 6:	समूहचर्चा	5 Hours		
इसकेमाध्यमसेविद्यार्थियोंमे	हिन्दीभाषामेंकौशलप्राप्तहोसकेगा।वेअपनीभावनाओंकोअच्छीतरहहिन्दीभाषामेंप्रकटकरसकेंगे।			
TOTAL LECT	URES	30 Hours		

DEPARTMENT OF BIOTECHNOLOGY

Program: BSc in Biotech	Year, semester: 2 nd yr, 3 rd semester
Course Title : MODERN INDIAN LANGUAGE- BENGALI	Subject Code: TIU-UEN-AEC-S2191B
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 02

COURSE OBJECTIVE :

Enable the student to:

Develop Bengali proficiency for clear, precise, and confident workplace communication. Enhance practical skills in vocabulary, grammar, pronunciation, speaking, and writing. Apply communication theories to improve professional and interpersonal interactions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Explain fundamental communication principles and their relevance in workplace interactions.	K2
CO-2:	Apply grammar and language skills to construct precise and coherent spoken and written communication.	K3
CO-3:	Demonstrate fluency in spoken Bengali through pronunciation drills, vocabulary building, and interactive conversations.	K4
CO-4:	Construct well-organized sentences, paragraphs, and linked paragraphs to enhance professional writing	K3
CO-5:	Develop and revise written communication by employing strategies for drafting, editing, and proofreading.	K3
CO-6:	Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.	K4

MODULE 1:	INTRODUCTION TO COMMUNICATION	10Hours	
এইকোর্সটিপড়ার	গপরশিক্ষার্থীদেরবাংলাভাষাওসাহিত্যসম্পর্কেসম্যকধারণাতৈরিহ বে	'পঠ ন বোধগ	
ম্যতারমধ্যেদিয়ে	কিছুমৌলিকদক্ষতাঅর্জনকরবেশব্দেরঅর্থজানা,		
বিষয়বস্তুসম্পর্কে	ঠসিদ্ধান্তেপৌঁছানএবংশব্দভাণ্ডারউন্নতকরাএছাড়াসঠিকভাবেলেখ	ারদক্ষতাঅর্জ	
নকরবে			
	LANGUAGE AND GRAMMAR SKILLS	10 Hours	
এইকোর্সটিসম্পূর্ণ	র্ণহওয়ারপরশিক্ষার্থীরাবাংলাবানানেরসঠিকউচ্চারণএবংবানানসম্প	ার্কিতনানাত	
থ্যেরঅনুসন্ধানব	ন্ববে [,] অনুবাদেরবিশেষদক্ষতাবাকৌশলকেআয়ন্তকরবে [,] এছাড়াওবি	াভিন্নপ্রকারের	
আবেদনপত্রলেখারনিয়ম-নীতিজানবেএছাড়াপরিভাষারসঙ্গেপরিচিতিলাভকরবে			
MODULE 3:	SPEAKING SKILLS	10 Hours	
এইকোর্সটিশিক্ষা	র্থীদেরবাংলাভাষাওসাহিত্যসম্পর্কেযেবিশেষধারণাতৈরিতেসাহায্যব	চরবেতারফলে	
শিক্ষার্থীরানিজেদেরমতনকরেভাষাপ্রয়োগেরকৌশলআয়ত্তকরবেএছাড়াবিভিন্নধরনেরপাঠদানে			
অংশগ্রহণকরার	সুযোগলাভকরবে ^৷		
TOTAL LECT	URES	30 Hours	

DEPARTMENT OF BIOTECHNOLOGY

Program: B. SC. in Biotech	Year, Semester: 2 nd Yr., 3rd Sem.
Course Title: Molecular Diagnostics	Subject Code: TIU-UBT-SEC-T2101
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the role of biotechnology in healthcare and disease diagnosis.
- 2. Learn biochemical and molecular diagnostic techniques for disease detection.
- 3. Explore molecular therapy approaches, including gene therapy and enzyme therapy.
- 4. Analyze emerging trends in diagnostics and personalized medicine.

COURSE OUTCOME (COs):

CO	Course Outcome Statement	
No.		
CO1	Define fundamental concepts of medical biotechnology, including human physiology, disease types, and their causes.	KI
CO2	Explain the principles and applications of biochemical and molecular diagnostic techniques such as PCR, ELISA, and HPLC.	K2
CO3	Illustrate the role of biochemical markers in disease diagnosis, including liver function tests, kidney function tests, and hormonal assays.	K2
CO4	Apply knowledge of molecular diagnostics in prenatal screening using invasive and non-invasive techniques.	K3
CO5	Demonstrate the application of molecular therapy approaches such as gene therapy, RNA-based therapeutics, and monoclonal antibody therapy in treating diseases.	K3
CO6	Analyze the significance of regenerative medicine and stem cell therapy in modern healthcare and disease treatment.	K4

COURSE CON	TENT :		
MODULE 1:	Introduction to Medical Biotechnology	15 Hours	
An introduction	An introduction to medical biotechnology: Biotechnology and health care; Basic human		
physiology; Def	inition of disease and its types: Genetic disease, Metabolic disease	e, Immune	
system malfunct	ion and disease, Hormonal disease, Vitamin and minerals deficient	ncy diseases.	
		1	
MODULE 2:	Biochemical and Molecular Diagnostics	15 Hours	
Biochemical and	d Molecular Diagnostics: Different biochemical test using protein	and enzyme	
markers and the	ir interpretation. e.g. Liver function test, kidney function test, bloc	od sugar test,	
hormone assay e	etc. Molecular diagnostics: PCR based detection, Microarray, Prot	ein profiling	
by HPLC, FACS, ELISA. Prenatal diagnosis - Invasive techniques - Amniocentesis, Fetoscopy,			
Chorionic Villi Sampling (CVS), Non-invasive techniques -Ultrasonography, X-ray, TIFA,			
maternal serum and fetal cells in maternal blood.			
MODULE 3:	Molecular Therapy & Regenerative Medicine	15 Hours	
Molecular thera	py: Gene therapy: DNA based vaccine, RNA based therapeutics, A	Antisence	
therapeutics; En	zyme therapy; Hormone therapy; Cytokine therapy; Monoclonal	Antibody	
therapy. An intr	oduction to stem cell therapy and regenerative medicine.		
TOTAL LECT	URES	45 Hours	

Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 2 nd Yr., 3 rd Sem.	
Course Title: Cytogenetics Lab	Subject Code: TIU-UBT-MJ-L21201	
Contact Hours/Week:0-0-4 (L-T-P)	Credit: 2	

Course objective

- 1. To provide hands-on training in cytological techniques such as mitotic and meiotic slide preparation, chromosomal staining, and mitotic index calculation for studying cell division.
- 2. To develop the ability to identify, analyze, and interpret chromosome structures, karyotypes, Barr bodies, and chromosomal aberrations using microscopy and image-based tools.
- 3. To introduce students to cytogenetic applications in medical genetics through case-based learning on chromosomal disorders and virtual observation of specialized chromosomes like polytene chromosomes.

CO No.	Course Outcome	
CO1	Recall and describe the stages of mitosis and meiosis through root tip and flower bud cell analysis.	K1
CO2	Understand the principles and techniques of chromosomal staining using Giemsa and Acetocarmine.	K2
CO3	Prepare and analyze human/mouse karyotypes and identify sex chromatin (Barr bodies) in buccal smears.	К3
CO4	Identify chromosomal aberrations using prepared slides/images and correlate them with cytogenetic abnormalities.	K3
CO5	Calculate the mitotic index and interpret the biological significance of active cell division.	K4
CO6	Evaluate chromosomal disorders (e.g., Down syndrome, Turner syndrome) through case studies and virtual observation of polytene chromosomes.	K4

Course outcome

Course content

Practical Title	Total-60
Study of mitosis in root tip cells (onion/Allium cepa)	hours
Study of meiosis in flower bud (grasshopper/testis/anther)	
Preparation of karyotype (human/mouse) from photographs	
Chromosome staining techniques (Giemsa, Acetocarmine)	
Study of Barr bodies in human cheek cells	
Identification of chromosomal aberrations using prepared slides/images	
Study of sex chromatin in buccal smear	
Preparation of temporary slides for mitotic index calculation	
Observation of polytene chromosomes (Drosophila larval salivary glands) – demo or virtual	
Case study/discussion on cytogenetic disorders (e.g., Down syndrome, Turner syndrome)	

Department of Biotechnology			
Program: B. Sc. in Biotech	Year, Semester: 2 nd Yr., 3rd Sem.		
Course Title: Bioprocess Technology Lab	Subject Code: TIU-UBT-MI-L21201		
Contact Hours/Week:0 –0–4 (L–T-P)	Credit: 2		

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand Microbial Growth and Survival Introduce students to bacterial growth dynamics and factors influencing microbial survival, including thermal death point (TDP) determination.
- 2. Develop Skills in Bioproduct Synthesis and Analysis Train students in the production and characterization of industrially important bioproducts such as ethanol, amylase, and lactic acid.
- 3. Apply Bioprocess Techniques for Industrial Applications Equip students with the ability to isolate and analyze microorganisms from natural sources for their potential use in biotechnological industries.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Identify the key principles of bacterial growth and understand its significance in microbial studies.	K1
CO-2:	Describe the concept of thermal death point (TDP) and its importance in microbial regulation and control.	K2
CO-3:	Carry out the production of ethanol and examine its properties using biochemical assessment techniques.	K3
CO-4:	Execute the extraction and characterization of amylase, demonstrating its enzymatic efficiency and activity.	K3
CO-5:	nvestigate the process of lactic acid production through microbial fermentation and evaluate its biochemical properties.	K4
CO-6:	Extract and study microorganisms from natural sources, assessing their industrial relevance and applications.	K4

Experiment	Total (60 hours)
Bacterial growth curve	
Calculation of thermal death point (TDP) of a	
microbial sample.	
Production and analysis of ethanol.	
Production and analysis of amylase.	
Production and analysis of lactic acid.	
Isolation of industrially important	
microorganism from natural resource.	

TECHNO INDIA UNIVERSITY

WESTBENGAL

Department of Biotechnology

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.
Course Title:Molecular Biology	Subject Code:TIU-UBT-MJ-T22201
Contact Hours/Week:3-1-0(L–T–P)	Credit: 4

Course Objective:

- 1. To introduce the fundamental principles of molecular biology, including DNA structure, replication mechanisms, and chromosomal organization in prokaryotes and eukaryotes.
- 2. To explain the processes of transcription, RNA processing, translation, and gene regulation, emphasizing their role in cellular function and genetic expression.
- 3. To develop an understanding of DNA damage, repair mechanisms, homologous recombination, and their implications in maintaining genomic stability.

E OUTCOME :	
Course Outcome	
Explain the structure, types, and functions of DNA, and describe the	K2
mechanisms of DNA replication in prokaryotes and eukaryotes.	
Analyze different types of DNA damage and explain the various DNA repair	K4
mechanisms, including homologous recombination.	
Describe the processes of transcription and RNA processing in prokaryotes	K2
and eukaryotes, including key enzymes and regulatory elements.	
Compare and contrast gene regulation mechanisms in prokaryotes and	K3
eukaryotes, focusing on operons, promoters, and transcription factors.	
Illustrate the molecular mechanisms of translation, including ribosome	K3
assembly, tRNA charging, and polypeptide synthesis.	
Evaluate the significance of post-translational modifications and the impact of	K4
translation inhibitors on protein synthesis.	
	Course Outcome Explain the structure, types, and functions of DNA, and describe the mechanisms of DNA replication in prokaryotes and eukaryotes. Analyze different types of DNA damage and explain the various DNA repair mechanisms, including homologous recombination. Describe the processes of transcription and RNA processing in prokaryotes and eukaryotes, including key enzymes and regulatory elements. Compare and contrast gene regulation mechanisms in prokaryotes and eukaryotes, focusing on operons, promoters, and transcription factors. Illustrate the molecular mechanisms of translation, including ribosome assembly, tRNA charging, and polypeptide synthesis. Evaluate the significance of post-translational modifications and the impact of

COURSE OUTCOME .

MODULE		15 Hours	
1:			
DNA structur	e and replication		
DNA as geneti	c material, Structure of DNA, Types of DNA, Replication of DNA i	n	
prokaryotesand	prokaryotesand eukaryotes: Semiconservative nature of DNA replication, Bi-directional		
replication, DNApolymerases, The replication complex: Pre-primming proteins, primosome,			
replisome, Rollingcircle replication, Unique aspects of eukaryotic chromosome replication,			
Fidelity of repl	ication.		
MODULE		15 Hours	

TECHNO INDIA UNIVERSITY WESTBENGAL

2:		
	repair and homologous recombination	
0,	and repair: causes and types of DNA damage, mechanism of DNA	
0	activation, base excision repair, nucleotide excision repair, mismate	
1	hesis, recombinational repair, nonhomologous end joining. Homol	1
	models and mechanism.	e
MODULE		15 Hours
3:		
Transcription	and RNA processing	
RNA structure	and types of RNA, Transcription in prokaryotes: Prokaryotic RNA	1
polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains		
polymerase,rol	e of sigma factor, promoter, Initiation, elongation and termination	of RNA chains
	e of sigma factor, promoter, Initiation, elongation and termination n Eukaryotes: Eukaryotic RNA polymerases, transcription factors,	
Transcription i	• •	
Transcription in promoters, enha	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors,	nd elongation
Transcription in promoters, enha RNAsplicing a	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance as	nd elongation
Transcription in promoters, enha RNAsplicing a	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance a nd processing: processing of pre-mRNA: 5' cap formation, polyad	nd elongation
Transcription is promoters,enha RNAsplicing a splicing,rRNA MODULE 4:	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance as nd processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing.	nd elongation
Transcription i promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance and nd processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing.	nd elongation enylation,
Transcription is promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of Regulation of g	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance and nd processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing.	nd elongation enylation, 15 hours
Transcription i promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of Regulation of g repressiblesyste	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance as nd processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing.	nd elongation enylation, 15 hours tic translation:
Transcription i promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of Regulation of repressiblesysteribosomestruct	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance and processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing. Gene expression and translation gene expression in prokaryotes: Operon concept (inducible and em), Genetic code and its characteristics, Prokaryotic and eukaryot ure and assembly, Charging of tRNA, aminoacyl tRNA synthetase	nd elongation enylation, 15 hours tic translation: s, Mechanism
Transcription is promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of Regulation of grepressiblesyster ribosomestruct ofinitiation, elo	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance and processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing. gene expression and translation gene expression in prokaryotes: Operon concept (inducible and em), Genetic code and its characteristics, Prokaryotic and eukaryot ure and assembly, Charging of tRNA, aminoacyl tRNA synthetase ongation and termination of polypeptides, Fidelity of translation, In	nd elongation enylation, 15 hours tic translation: s, Mechanism
Transcription is promoters,enha RNAsplicing a splicing,rRNA MODULE 4: Regulation of Regulation of grepressiblesyster ribosomestruct ofinitiation, elo	n Eukaryotes: Eukaryotic RNA polymerases, transcription factors, ancers, mechanism of transcription initiation, promoter clearance and processing: processing of pre-mRNA: 5' cap formation, polyad and tRNA splicing. Gene expression and translation gene expression in prokaryotes: Operon concept (inducible and em), Genetic code and its characteristics, Prokaryotic and eukaryot ure and assembly, Charging of tRNA, aminoacyl tRNA synthetase	nd elongation enylation, 15 hours tic translation: s, Mechanism

Department of Biotechnology

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.
Course Title: Parasitology and Immunology	Subject Code: TIU-UBT-MJ-T22202
Contact Hours/Week : 3-1-0(L–T–P)	Credit: 4

Course Objective:

- 1. Understand the fundamental concepts of the immune system, including its components, immune responses, and molecular structure of immunoglobulins, along with T-cell and B-cell receptor mechanisms.
- 2. Analyze the genetic and molecular basis of antibody diversity, immunoglobulin gene regulation, clonal selection, and immune memory, and explore the mechanisms behind immune system regulation.
- 3. Evaluate the role of immunological mechanisms in health and disease, including antigen processing, immune responses to pathogens, autoimmune diseases, immunodeficiency disorders, and advancements in vaccine development and immunodiagnostics.

CO	Course Outcome Statement	
No.		
CO1	Understand the fundamental principles of immunology by identifying key components of the immune system, including immune cells, immunoglobulins, and T-cell responses.	K1
CO2	Explain the molecular mechanisms of immune responses, including antibody generation, class switching, and genome rearrangements during B and T cell differentiation.	K2
CO3	Analyze the genetic basis of immunoglobulin gene expression and antibody diversity, including clonal selection theory, allelic exclusion, and mechanisms of immunologic memory.	K3
CO4	Evaluate the role of major histocompatibility complexes (MHC) and antigen processing mechanisms in immune system regulation and pathogen defense.	K3
CO5	Assess immune-related disorders such as autoimmune diseases and immunodeficiencies (e.g., AIDS), exploring their underlying mechanisms and clinical significance.	K4
CO6	Demonstrate knowledge of immunization strategies and immunodiagnostic techniques, including vaccine development, ELISA, and RIA, in disease prevention and diagnostics.	K4

COURSE CON		
MODULE 1:		15 Hours
UNIT I (20 Periods)		
Immune Response - An overview, components of mammalian immune system, molecular		
structure of Imn	nuno-globulins or Antibodies, Humoral & Cellular immune respo	nses, T
lymphocytes &	immune response (cytotoxic T-cell, helper T-cell, suppressor T-ce	ells), T-cell
receptors, genor	ne rearrangements during B-lymphocyte differentiation, Antibody	/ affinity
maturation class	s switching, assembly of T-cell receptor genes by somatic recomb	ination.
MODULE 2:		15 Hours
UNIT II	(15 Periods)	
Regulation of in	nmunoglobulin gene expression – clonal selection theory, allotype	es & idiotypes,
allelic exclusion	, immunologic memory, heavy chain gene transcription, genetic l	basis of
antibody diversi	ty, hypotheses (germ line & somatic mutation), antibody diversity	/.
MODULE 3:		15 Hours
UNIT III	(13 Periods)	
Major Histocom	patibility complexes – class I & class II MHC antigens, antigen p	rocessing.
Immunity to infection – immunity to different organisms, pathogen defense strategies,		
avoidance of rec	cognition. Autoimmune diseases, Immunodeficiency-AIDS.	-
	•	
Module 4	15 hours	
UNIT IV (12 Periods)		
Vaccines & Vaccination – adjuvants, cytokines, DNA vaccines, recombinant vaccines, bacterial		
vaccines, viral vaccines, vaccines to other infectious agents, passive & active immunization.		
Introduction to immunodiagnostics – RIA, ELISA.		
TOTAL LECT	URES	60 Hours

Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.	
Course Title:INSTRUMENTATION AND TECHNIQUE – II	Subject Code: TIU-UBT-MI-T22201	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3	

Course Objective:

- 1. To introduce the fundamental principles and applications of spectroscopy, chromatography, electrophoresis, centrifugation, and microscopy techniques in biotechnology.
- 2. To equip students with knowledge of modern analytical techniques used for biomolecular identification, purification, and structural analysis.
- 3. To develop practical skills in using advanced biotechnological instruments for qualitative and quantitative analysis in laboratory research and industrial applications.

CO	Course Outcome Statement	
No.		
CO1	Explain the fundamental principles of spectroscopy, including UV-Visible,	Κ
	Fluorescence, IR, and Atomic Absorption Spectroscopy, and their applications in	1
	biomolecular analysis.	
CO2	Describe and compare various chromatographic techniques such as Paper	Κ
	Chromatography, TLC, HPLC, GC, Gel Filtration, and Affinity Chromatography	2
	for biomolecule separation and purification.	
CO3	Demonstrate the principles and applications of electrophoresis techniques,	Κ
	including agarose gel, polyacrylamide gel, and isoelectric focusing, in the	3
	separation of nucleic acids and proteins.	
CO4	Apply centrifugation techniques such as ultracentrifugation, differential, and	Κ
	density gradient centrifugation for the fractionation of cellular components.	3
CO5	Analyze the working principles and applications of Mass Spectrometry (MS), X-	Κ
	ray Crystallography, and NMR Spectroscopy in biomolecular identification and	4
	structure determination.	
CO6	Evaluate the role of advanced microscopy techniques, including light,	Κ
	fluorescence, and electron microscopy (TEM, SEM), in cellular imaging and	4
	structural analysis.	

MODULE 1:	12 Hours	
Basic Principles of Spectroscopy: Introduction to the interaction between light and		
absorption, emission, and scattering of light.UV-Visible Spectroscopy: Principles,		
instrumentation, and applications in quantitative analysis of biomolecules. Fluores	cence	
Spectroscopy: Theory, instrumentation, and applications in protein and nucleic aci	d studies.	
Infrared (IR) Spectroscopy: Principles of IR absorption, functional group analysis,	and	
applications in biomolecular identification. Atomic Absorption Spectroscopy (AA		
instrumentation, and applications in detecting trace elements in biological samples		
MODULE 2:	12 Hours	
Basic Principles of Chromatography: Partition, adsorption, and ion-exchange chro	U 1 I	
Paper and Thin Layer Chromatography (TLC): Techniques, mechanisms, and appl		
separation of biomolecules. High-Performance Liquid Chromatography (HPLC): I		
instrumentation, and applications in protein and drug analysis. Gas Chromatograph		
Fundamentals, instrumentation, and applications in volatile compound analysis. G		
and Affinity Chromatography: Techniques for protein purification and molecular s	size	
determination.	40.77	
MODULE 3:	10 Hours	
Gel Electrophoresis: Principles of agarose and polyacrylamide gel electrophoresis		
acids and proteins. Isoelectric Focusing and 2D Gel Electrophoresis: Techniques f		
separation based on isoelectric point and molecular weight. Centrifugation: Princip		
applications of preparative and analytical centrifugation. Ultracentrifugation, diffe	rential, and	
density gradient centrifugation for subcellular fractionation Module 4 11 hours		
	otain and	
Mass Spectrometry (MS): Basic principles, instrumentation, and applications in protein and		
metabolite identification. X-ray Crystallography: Fundamentals, instrumentation, and applications in determining 3D structures of biomolecules. Nuclear Magnetic Resonance (NMR)		
Spectroscopy: Principles, instrumentation, and applications in studying biomolecular structure		
and dynamics. Microscopy Techniques: Light microscopy, fluorescence microscopy, and		
electron microscopy (TEM, SEM) in cellular imaging and analysis.		
coordin moroscopy (12.00, 52.00) in contrain imaging and analysis.		

DEPARTMENT OF BIOTECHNOLOGY

Program: BSc in Biotechnology	Year, Semester: 2 ND Year, 4 th Sem
Course Title: MODERN INDIAN LANGUAGE – HINDI	Subject Code: TIU-UEN-AEC-S2291A
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. Strengthen students' command of Hindi grammar, vocabulary, and sentence construction through advanced reading, writing, and conversation practice.
- 2. Develop literary appreciation by engaging with selected short stories and poems, with a focus on understanding themes, characters, and cultural context.
- 3. Encourage confident expression in spoken and written Hindi through class discussions, roleplays, narrations, and short compositions on everyday and cultural topics.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recall and use extended Hindi vocabulary and idiomatic expressions in both oral and written communication.	K1
CO-2:	Construct coherent and grammatically accurate short paragraphs and dialogues on familiar topics.	K3
CO-3:	Interpret themes, messages, and character motivations from selected Hindi short stories and poems.	K2
CO-4:	Compare and contrast cultural values, traditions, and social issues as portrayed in Hindi literary texts.	K4
CO-5:	Deliver short oral presentations or narrations in Hindi on everyday and cultural topics with improved fluency.	K3
CO-6:	Evaluate the literary and linguistic qualities of Hindi texts through class discussions, assignments, or presentations.	K5

TECHNO INDIA UNIVERSITY WESTBENGAL

MODULE 1:	घीसा (कहानी): महादेवीवर्मा	5 Hours
इसकहानीकेमाध्यमसेविद्यार्थीमेंमानवतावादीमूल्योंकाविकासहोपाएगा।वेपरोपकार, न्याय, सेवाऔरकर्तव्यकीभावनाकोग्रहणकरपाएंगे।		
MODULE 2:	कौनसीजमीनअपनी (कहानी) : सुधाओमढींगरा	5 Hours
इसकहानीकेमाध्यमसेविद्यार्थीसंयु [.]	क्तपरिवारकेमहत्वकोसमझपाएंगे।उनमेंअपनीमातृभूमिकेप्रतिप्रेमऔरलगावकीभावनाकासंचारहोपाएगा।	
MODULE 3:	होगईहैपीरपर्वतसी (कविता) : दुष्यंतकुमार	5 Hours
इसकविताकेमाध्यमसेविद्यार्थीअप	नेकर्तव्यऔरदायित्वकेप्रतिजिम्मेदारबनपाएंगे।उनमेंअपनेपरिवार, समाज,	
देशऔरविश्वकेप्रतिअपनेकर्तव्यबो	धकाएहसासहोसकेगा।	
MODULE 4:	धार्मिकदंगोंकीराजनीति (कविता) : शमशेरबहादुरसिंह	5 Hours
इसकविताकेमाध्यमसेविद्यार्थीधर्म	केसहीअर्थकोसमझपाएंगे।वेदेशकीविवधतामेंएकताकीभावनाकोसमझपाएंगे।	
MODULE 5:	अनुवाद (अंग्रेजीसेहिन्दी)	5 Hours
इसकेमाध्यमसेविद्यार्थीहिन्दीभाषा	मेंअनुवादकाकौशलप्राप्तकरपाएंगे।वेहिन्दीकेराजभाषाशब्दावलियोंकाकार्यालयीक्षेत्रमेंप्रयोगकरपाएंगे।	
MODULE 6:	समूहचर्चा	5 Hours
इसकेमाध्यमसेविद्यार्थियोंमेंहिन्दीभाषामेंकौशलप्राप्तहोसकेगा।वेअपनीभावनाओंकोअच्छीतरहहिन्दीभाषामेंप्रकटकरसकेंगे।		
TOTAL LECTURES 30 Hours		

DEPARTMENT OF BIOTECHNOLOGY

Program: BSc in Biotechnology	Year, semester: 2 nd yr, 4 TH semester	
Course Title : MODERN INDIAN LANGUAGE- BENGALI	Subject Code: TIU-UEN-AEC-S2291B	
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2	

COURSE OBJECTIVE :

Enable the student to:

- 1. Enhance understanding of Bengali grammar and vocabulary, enabling them to construct more complex sentences and express ideas clearly in both spoken and written forms.
- 2. Strengthen listening and speaking skills in Bengali through audio materials, conversations, narrations, and interactive classroom activities.
- 3. Develop literary appreciation and cultural awareness by engaging with selected literary texts, focusing on themes, narrative techniques, and the use of language in context.

COURSE OUTCOME :

On completion of the course, the student will be able to:

on completion of the course, the student will be uple to:		
CO-1:	Recall and use an expanded set of Bengali vocabulary and grammar structures in both oral and written communication.	K1
CO-2:	Apply appropriate grammatical rules to frame longer and more coherent sentences and paragraphs in Bengali.	K3
CO-3:	Demonstrate improved listening and speaking proficiency by participating in conversations, role-plays, and oral presentations.	K3
CO-4:	Interpret the themes, characters, and messages of selected Bengali literary texts,	K1
CO-5:	Analyze the use of language, cultural references, and literary elements in the prescribed literary texts.	K4
CO-6:	Express personal views and summaries related to the stories and poem both orally and in writing, showing comprehension and engagement.	K5

MODULE 1:	ব্যাকরণওশব্দভাণ্ডার	5 Hours
	। বনিগতরূপান্তর	
	ওক্রিয়াররাপান্তর (কাল, পুরুষ, সংখ্যাঅনুযায়ী)	
	গর্বারারা । তির (মানা, রুমার, গাঁবে) অনুবারা) ঠনওবাক্যগঠন	
	দ: ইংরেজিথেকেবাংলাছোটবাক্যঅনুশীলন	
MODULE	<u>ଅ</u> ସମିତ୍ର କଥୋମ କଥିବା ବ୍ୟୁକାର କୁଲା କାର୍ଯ୍ୟ କରି	5 Hours
2:		5 110015
	- ডিওক্লিপওছোটবাংলাগল্পশোনাওবোঝা	
	কপ্রশোত্তরঅনুশীলন	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	াপকথন – বাজারে, রাস্তায়, কলেজে	
	ভাষণঅনুশীলন	
MODULE	গল্পপাঠ – "ছুটি" ওজনপ্রিয়চরিত্র	5 Hours
<u>3:</u>		
"ছাঁঢ" – রবান্দ	নোথঠাকুর:মূলভাব, চরিত্রবিশ্লেষণ, সমাজওসংস্কৃতিরপ্রভাব	4
	না / ভোম্বলসরকার (যেকোনোএকটি):	
	ারব্যবহার, কল্পনারপ্রয়োগ	
	ওছোটরচনালেখা	
MODULE	কবিতাপাঠ – শক্তিওরবীন্দ্রনাথ	5 Hours
<u>4:</u> "फारनीराफिफ	। মাছো?'' – শক্তিচট্টোপাধ্যায়:	
•		
•••	প্রক্ষাপট, ভাষারবহুমাত্রিকতা নাগ্র চকর:	
"প্রশ্ন" – রবীন্দ স্যাধ্যাজ্যিকজ		
•	, অস্তিত্বওমানবতাবোধ জ্যালক্ষ্যবিক্ষ্যের	
	অলঙ্কারবিশ্লেষণ	<i>E</i> TT
MODULE 5:	অভিব্যক্তিওমূল্যায়ন	5 Hours
<u>্র.</u> রচনামূলককা	। র্যকলাপ:	I
	<u>র্</u> ততানিয়েলেখা	
কবিতারভাবস		
MODULE	<u>শ</u> ্রগারন শ্রুতিওপাঠভিত্তিকমূল্যায়ন	5 Hours
6:		
মৌখিকউপস্থ	াপনাঃ গল্প/কবিতাব্যাখ্যাওপ্রতিক্রিয়াপ্রকাশ	
	CTURES	30 Hours



# **TECHNO INDIA UNIVERSITY**

## W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.
<b>Course Title:</b> Gender studies	Subject Code:TIU-UWS-CVA-T2201
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

#### **Course Objective:**

1. Develop a Critical Understanding of Gender in Science and Society

Examine key concepts in gender studies, including sex, gender identity, and social constructions of gender.

Analyze how gender roles, stereotypes, and feminist theories shape education, careers, and scientific progress.

2 Assess the Impact of Gender on Scientific Research and Biotechnology

Investigate the contributions and challenges of women in STEM, gender bias in research, and ethical concerns in biotechnology.

Explore gendered innovations and how inclusive approaches can drive advancements in biotechnology and healthcare.

3 Evaluate Gendered Perspectives in Health, Ethics, and Global Development

Understand the influence of gender on health outcomes, reproductive technologies, and mental health.

Analyze gender policies, sustainable development goals, and the role of biotechnology in addressing global challenges.

СО	Course Outcome (COs)	
No.		
CO1	Define and explain key gender concepts, including sex, gender identity, gender expression, and feminist theories.	K1
CO2	Understand how gender roles, stereotypes, and norms are shaped by historical, social, and cultural factors, particularly in science and education.	K2
CO3	Analyze gender bias in STEM fields, scientific research, and the impact of gendered innovations in biotechnology.	K3
CO4	Evaluate ethical implications of biotechnological advancements from a gender perspective and explore gender inclusivity strategies in the workplace.	K4
CO5	Investigate the role of gender in healthcare access, reproductive technologies, and mental health, considering their societal impact.	K3
CO6	Critically assess global gender policies, economic opportunities, and sustainable development, focusing on biotechnology-driven solutions.	K4

## **TECHNO INDIA UNIVERSITY** WESTBENGAL

MODULE 1:	10 Hours	
Key Concepts in Gender Studies: Sex, gender, sexuality, masculinity, femininity, gender		
identity, and gender expression. Social Construction of Gender: How gender roles and identities		
are shaped by culture, society, and historical contexts. Gender Stereotypes and No	orms:	
Understanding traditional gender roles, stereotypes in society, and their implication	ons in personal	
and professional lives. Feminist Theories: Key feminist movements, gender equal	ity, and	
intersectionality. Gender and Education: The role of gender in education and its in	ifluence on	
career choices, especially in science and technology.		
MODULE 2:	10 Hours	
Women in Science: Contributions of women scientists, barriers faced, and the	-	
underrepresentation of women in STEM fields. Gender Bias in Research: Underst	anding gender	
biases in scientific research and how it affects the development of technology, here	althcare, and	
biotechnology. Gendered Innovations: How considering gender can lead to new s	cientific	
discoveries and innovations in biotechnology and other fields. Gender and Ethics	in	
Biotechnology: Ethical implications of biotechnological advancements (reproductive		
technologies, genetic engineering) from a gender perspective. Workplace Dynamics in Science		
and Technology: Gender roles and leadership in the biotechnology workforce, gen	nder pay gap,	
and strategies for achieving gender inclusivity		
MODULE 3:	10 Hours	
Gender and Health: How gender influences health outcomes, access to healthcare, and medical		
research. Reproductive Rights and Technologies: The role of biotechnology in reproductive		
health (IVF, contraception, genetic screening) and its gendered implications. Gender and Mental		
Health: Gender differences in mental health diagnosis, treatment, and societal perceptions.		
Global Perspectives on Gender Equality: Gender policies and their impact on education, health,		
and economic opportunities across different cultures. Gender and Sustainable Development:		
Role of gender in addressing global challenges like poverty, climate change, and food security,		
with an emphasis on biotechnological solutions.		
TOTAL LECTURES	30 Hours	



# **TECHNO INDIA UNIVERSITY**

## W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.
Course Title: Molecular Biology lab	Subject Code:TIU-UBT-MJ-L22201
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 2

#### **Course Objective:**

- 1. Develop Fundamental Laboratory Skills in Molecular Biology
- 2. Train students in the preparation of essential solutions and reagents required for molecular biology experiments.
- 3. Ensure accuracy in handling and measuring biochemical solutions for DNA-related procedures.

#### **COURSE OUTCOME :**

CO No.	Course Outcome (COs)	
CO1	Prepare and standardize solutions required for molecular biology experiments.	K1
CO2	Demonstrate the isolation of chromosomal DNA from bacterial cells.	K2
CO3	Perform plasmid DNA isolation using the alkaline lysis method.	K3
CO4	Analyze genomic and plasmid DNA using agarose gel electrophoresis.	K3
CO5	Prepare and execute restriction enzyme digestion of DNA samples.	K4
CO6	Demonstrate the AMES test or reverse mutation assay to assess carcinogenicity.	K4

Experiment	Total (60 hours)
Preparation of solutions for Molecular	
Biology experiments.	
Isolation of chromosomal DNA from bacterial	
cells.	
Isolation of Plasmid DNA by alkaline lysis	
method	
Agarose gel electrophoresis of genomic DNA	
& plasmid DNA	
Preparation of restriction enzyme digests of	
DNA samples	
Demonstration of AMES test or reverse	
mutation for carcinogenicity	



#### \Department of Biotechnology

Program: B. Sc. in Biotech	<b>Year, Semester: 2ND</b> Yr., 4 th Sem.
<b>Course Title:</b> Parasitology and <b>Immunology</b> Lab	Subject Code:TIU-UBT-MJ-L22202
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 2

#### **Course Objective:**

1. Develop Fundamental Skills in Hematological Analysis

Train students in performing differential and total leucocyte counts, as well as total RBC counts, for immune system assessment.

Ensure proficiency in blood sample handling and accurate microscopic analysis of blood components.

2. Introduce Serological Techniques for Immune Response Assessment

Teach students the principles and applications of haemagglutination and haemagglutination inhibition assays.

Develop expertise in separating serum from blood for immunological testing.

3. Equip Students with Hands-on Experience in Immunodiagnostic Techniques

Provide practical training in immunodiffusion techniques for antigen-antibody interaction studies.

CO No.	Course Outcome (COs)	
CO1	Explain the principles behind hematological tests, including differential	
	leucocyte count, total leucocyte count, and total RBC count.	
CO2	Perform hematological assays to determine leucocyte and RBC counts	K2
	accurately.	
CO3	Demonstrate serological techniques such as haemagglutination and	K3
	haemagglutination inhibition assays.	
CO4	Isolate and separate serum from blood samples for immunological testing.	K3
CO5	Conduct double immunodiffusion tests to analyze antigen-antibody	K4
	interactions.	
CO6	Perform ELISA to detect specific antigens or antibodies, interpreting the	K4
	results for diagnostic applications.	



Experiment	Total 60 hours
Differential leucocytes count	
Total leucocytes count	
Total RBC count	
Hemagglutination assay	
Hemagglutination inhibition assay	
Separation of serum from blood	
Double immunodiffusion test using specific	
antibody and antigen	
ELIS	



## **TECHNO INDIA UNIVERSITY**

## W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 2ND Yr., 4 th Sem.
Course Title:Methods in Biology Lab	Subject Code:TIU-UBT-MI-L22201
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

#### **Course Objective:**

1. Develop Proficiency in Electrophoresis Techniques

Train students in protein separation methods using native gel electrophoresis and SDS-PAGE under reducing conditions.

Ensure understanding of protein migration, molecular weight determination, and data interpretation.

2. Equip Students with Skills in Cellular and Biochemical Analysis

Teach the preparation of sub-cellular fractions from rat liver cells and protoplast isolation from plant leaves.

Develop expertise in biochemical techniques for studying cellular components.

3. Introduce Chromatographic and Spectrophotometric Techniques

Provide hands-on experience in amino acid separation via paper chromatography and lipid identification using TLC.

Demonstrate the principles of spectrophotometry, including verification of Beer's law and determination of the molar extinction coefficient of NADH.

CO	Course Outcome (COs)	
No.		
CO1	Explain the principles and techniques of electrophoresis for protein separation,	K1
	including native and SDS-PAGE methods.	
CO2	Demonstrate the preparation of sub-cellular fractions from rat liver cells for	K2
	biochemical analysis.	
CO3	Perform protoplast isolation from plant leaves using enzymatic digestion	K3
	techniques.	
CO4	Apply chromatography techniques such as paper chromatography for amino acid	K3
	separation and TLC for lipid identification.	
CO5	Analyze spectrophotometric data to verify Beer's law and determine the molar	K4
	extinction coefficient of NADH.	
CO6	Evaluate and interpret experimental results obtained from electrophoresis,	K4
	chromatography, and spectrophotometry for biological sample analysis.	



Experiment	TOTAL (30 HOURS)
Native gel electrophoresis of proteins	
SDS-polyacrylamide slab gel electrophoresis	
of proteins under reducing conditions.	
Preparation of the sub-cellular fractions of rat	
liver cells.	
Preparation of protoplasts from leaves.	
Separation of amino acids by paper	
chromatography.	
To identify lipids in a given sample by TLC.	
To verify the validity of Beer's law and	
determine the molar extinction coefficient of	
NADH.	



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 5 th Sem.
Course Title:PLANT CELL AND TISSUE CULTURE (Major)	Subject Code: TIU-UBT-MJ-T31301
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Course Objective:

- 1. Understand the Molecular and Genetic Basis of Plant Biotechnology
- 2. Introduce students to DNA molecular markers, gene mapping, genome analysis, and genetic transformation techniques.
- 3. Familiarize students with commonly used vectors, gene cloning strategies, and intellectual property rights (IPR) in plant biotechnology.
- 4. Develop Skills in Genetic Engineering and Stress Biology
- 5. Explore applications of plant tissue culture in bioprospecting, biofortification, secondary metabolite production, and cryopreservation.

CO No.	Course Outcome (COs)	
CO1	Explain the principles and applications of DNA molecular markers, gene	K1
	mapping, and genome analysis in plant biotechnology.	
CO2	Describe different gene cloning strategies, genetic transformation techniques,	K2
	and risk assessment in plant biotechnology.	
CO3	Perform gene isolation, tissue-specific gene expression, and molecular	K3
	analysis of genetically modified plants.	
CO4	Analyze molecular mechanisms of biotic and abiotic stress responses and	K4
	their role in plant genetic engineering.	
CO5	Apply various plant tissue culture techniques such as somatic embryogenesis,	K3
	anther culture, and somatic hybridization for crop improvement.	
CO6	Evaluate the role of plant biotechnology in secondary metabolite production,	K4
	biofortification, cryopreservation, and RNAi technology.	



MODULE	20 Hours
1:	
DNA molecular markers; Principles, type and applications; RFLP, AFLP, R Structural and functional genomics, gene mapping, genome mapping, gene	
comparative genomics and applications, Restriction enzymes and their uses	, Salient features of
most commonly used vectors i.e. plasmids, bactetiophages, phagmids, cosm	ids, BACs and
PACs, YACs, binary vectors, expression vectors, Gene cloning and sub-clo	ning strategies,
chromosome walking, genetic transformation, Risk assessment and IP	
MODULE	20 Hours
2:	
Isolation of genes of economic importance, Gene construction for tissue-spe Different methods of gene transfer to plants, <i>viz</i> . direct and vector-mediated	
of transformants, Molecular biology of various stresses like drought, salt, he	•
	-
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig	nal transduction and
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for c	nal transduction and rop improvement, i.e
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage	nal transduction and rop improvement, i.e protein quality,
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cu	nal transduction and rop improvement, i.e protein quality,
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor	nal transduction and rop improvement, i.e protein quality,
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE 3:	nal transduction and rop improvement, i.e protein quality, ms and controlled <b>20 Hours</b>
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE	nal transduction and rop improvement, i.e protein quality, ms and controlled <b>20 Hours</b>
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE 3:	nal transduction and rop improvement, i.e protein quality, ms and controlled 20 Hours n, Concept of
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE 3: Basic techniques in cell culture and somatic cell genesis, Clonal propagation	nal transduction and rop improvement, i.e protein quality, ms and controlled 20 Hours n, Concept of as, Hybrid embryo
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for cr insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE 3: Basic techniques in cell culture and somatic cell genesis, Clonal propagation cellular totipotency, Anther culture, Somaclonal and gametoclonal variation	nal transduction and rop improvement, i.e protein quality, ms and controlled 20 Hours n, Concept of as, Hybrid embryo cation of tissue 13
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for crisis insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs MODULE 3: Basic techniques in cell culture and somatic cell genesis, Clonal propagation cellular totipotency, Anther culture, Somaclonal and gametoclonal variation culture and embryo rescue, Somatic hybridization and cybridization, Applic	nal transduction and rop improvement, i.e protein quality, ms and controlled <b>20 Hours</b> n, Concept of as, Hybrid embryo eation of tissue 13 ting, Biofortification
temperature, and biotic stresses like bacterial, fungal and viral diseases, Sig its molecular basis, Potential applications of plant genetic engineering for crisis insect-pest resistance, abiotic stress resistance, herbicide resistance, storage increasing shelf-life, oil quality, Current status of transgenics, biosafety nor field trials and release of transgenics (GMOs <b>MODULE</b> 3: Basic techniques in cell culture and somatic cell genesis, Clonal propagation cellular totipotency, Anther culture, Somaclonal and gametoclonal variation culture and embryo rescue, Somatic hybridization and cybridization, Applic culture in crop improvement, Secondary metabolite production, Bioprospec	nal transduction and rop improvement, i.e protein quality, ms and controlled <b>20 Hours</b> n, Concept of as, Hybrid embryo eation of tissue 13 ting, Biofortification



Department	of 1	Biotech	nology
------------	------	---------	--------

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 5 th Sem.
Course Title:Food Biotechnology	Subject Code: TIU-UBT-MJ-T31302
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

#### **Course Objective:**

**1.** To understand the principles of food biotechnology, including microbial fermentation, industrial enzymes, and genetic modifications, and their applications in improving food quality, safety, and nutrition.

2. To explore the role of biotechnology in food preservation, processing, and packaging, including biotechnological advancements in food safety, spoilage prevention, and sustainable packaging solutions.

3. To examine food quality control measures, safety regulations, and emerging trends in food biotechnology, such as functional foods, nutraceuticals, and sustainable biotechnological innovations for the food and pharmaceutical industries.

CO	Course Outcome (COs)		
No.			
CO1	Explain the fundamental concepts of food biotechnology, including the role of	K1	
	microorganisms, fermentation, and industrial enzymes in food production.		
CO2	Describe the principles and applications of genetically modified (GM) foods,	K2	
	functional foods, and nutraceuticals in enhancing food security and human		
	health.		
CO3	Apply biotechnological approaches to food preservation, food safety, and	K3	
	processing, including the use of antimicrobial compounds and foodborne		
	pathogen detection techniques.		
CO4	Analyze food packaging innovations, including nanotechnology, edible films,	K4	
	and biodegradable materials for sustainable packaging solutions.		
CO5	Evaluate food quality control systems, food safety regulations, and	K4	
	biotechnological methods for detecting adulteration and ensuring food		
	authenticity.		
CO6	Apply biotechnology in waste utilization, flavor enhancement, and emerging	K3	
	food trends such as lab-grown meat and sustainable food production.		

## **TECHNO INDIA UNIVERSITY** WESTBENGAL

COURSE CONTENT :	1		
MODULE 1:	15 Hours		
Introduction to Food Biotechnology: Basics of Food Biotechnology: Scope, importance, and			
applications in the food industry. Microorganisms in Food Biotechnology: Role of bacteria,			
yeasts, molds, and fungi in food processing and fermentation. Food Fermentation: Principles and			
applications of microbial fermentation in producing dairy products (yogurt, cheese	), beverages		
(beer, wine), and fermented foods (sauerkraut, soy products). Enzymes in Food Bio	otechnology:		
Industrial enzymes used in food processing (amylases, proteases, lipases), enzymat	tic		
modification of food products.Biotechnology in Food Production: Improving food	yield, quality,		
and nutritional content through microbial fermentation and biotechnological process	sses.		
MODULE 2:	15 Hours		
Genetically Modified Foods and Functional Foods Genetically Modified (GM) Foods	ods:		
Definition, examples (Bt corn, Golden rice), and applications of GM crops in enha	ncing food		
security and nutrition. Techniques for GM Food Development: Genetic engineerin			
gene transfer techniques, CRISPR, and applications in modifying food crops for pe	est resistance,		
drought tolerance, and improved nutritional content. Functional Foods and Nutrace	euticals:		
Definition, categories (probiotics, prebiotics, antioxidants, omega-3 fatty acids), ar	nd their health		
benefits. Biotechnology in Food Fortification: Enhancing food with vitamins, mine	erals, and		
bioactive compounds for improved health and nutrition. Regulation and Safety of C	GM Foods:		
Safety assessment protocols, public concerns, and labeling of GM foods.			
MODULE 3:	15 hours		
Food Preservation, Processing, and Packaging: Biotechnological Approaches to Fo	ood		
Preservation: Role of natural antimicrobial compounds, bacteriocins, and biopreservation			
techniques in extending food shelf life. Food Spoilage and Safety: Microbial spoilage of food,			
detection of foodborne pathogens, and techniques to ensure food safety (PCR, ELISA). Food			
Processing Technologies: Biotechnological advancements in food processing (high-pressure			
processing, membrane filtration, irradiation). Food Packaging Innovations: Role of			
nanotechnology, edible films, and biodegradable materials in smart and active food packaging.			
Biotechnology in Waste Utilization: Valorization of food industry waste for the pre-	oduction of		
biofuels, bioactive compounds, and enzymes.			
Module 4 15 hours			
Food Quality Control, Standards, and Regulations: Food Quality Control: Concepts of HACCP			
(Hazard Analysis and Critical Control Points), ISO standards, and food safety management			
systems. Food Adulteration and Biotechnology: Biotechnological methods for detecting food			
adulterants, food fraud prevention, and ensuring authenticity. Regulations and Compliance:			
National and international food safety regulations (FSSAI, FDA, EFSA), GMO labelling laws,			
and intellectual property rights in food biotechnology. Biotechnology in Flavour and Aroma			
Enhancement: Role of microbial cultures and enzymes in developing Flavors and aromas in			
food products. Future Trends in Food Biotechnology: Personalized nutrition, plant	-based and		
lab-grown meat alternatives, sustainable food production using biotechnology.	1		
TOTAL LECTURES	60Hours		



Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 5 th Sem.	
Course Title:Biostatistics	Subject Code: TIU-UBT-MI-T31201	
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4	

### **Course Objective:**

**1.** To introduce fundamental statistical concepts and data analysis techniques, including data collection, classification, graphical representation, and measures of central tendency and dispersion.

2. To develop an understanding of probability and its applications in biological sciences, including probability distributions (Binomial, Poisson, and Normal) and their significance in data analysis.

3. To equip students with statistical inference and hypothesis testing methods, including t-tests, chi-square tests, ANOVA, correlation, and regression analysis for biological research applications.

CO	Course Outcome	
No.		
CO1	Define and classify different types of data, their sources, and methods of graphical representation.	K1
CO2	Explain and apply measures of central tendency, dispersion, skewness, and kurtosis in biological data analysis.	K2
CO3	Apply probability concepts and probability distributions (Binomial, Poisson, and Normal) to biological problems.	K3
CO4	Demonstrate methods of sampling, hypothesis testing, and statistical inference for biological research.	K3
CO5	Analyze biological data using statistical tests such as t-test, chi-square test, and ANOVA.	K4
CO6	Interpret correlation and regression analysis in biological research scenarios.	K4

### **COURSE OUTCOME :**



MODULE			15 Hours
1:			
Types of Data,	Collection of dat	a; Primary & Secondary data, Classific	cation and Graphical
representation of Statistical data. Measures of central tendency and Dispersion. Measures of			
Skewness and	Kurtosis.		
MODULE			15 Hours
2:			
Probability cla	ssical & axiomati	c definition of probability, Theorems of	on total and compound
probability), E	lementary ideas o	f Binomial, Poisson and Normal distril	butions.
MODULE			15 Hours
3:			
Methods of sampling, confidence level, critical region, testing of hypothesis and standard error,			
large sample te	est and small sam	ple test. Problems on test of significance	e, t-test, chi-square test
for goodness of fit and analysis of variance (ANOVA)			
-	-		
Module 4		15 h	ours
Correlation and Regression. Emphasis on examples from Biological Sciences			
TOTAL LEC	TURES		60 Hours



## W E S T B E N G A L

Department o	f Biotechnology
--------------	-----------------

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 5 th Sem.
Course Title:Bio separation and technology lab	Subject Code: TIU-UBT-MJ-L31351
Contact Hours/Week: 0-0-4 (L–T–P)	Credit: 2

#### **Course Objective:**

- 1. To familiarize students with various cell disruption techniques (mechanical and nonmechanical) for the extraction of intracellular biomolecules.
- 2. To introduce fundamental bioseparation techniques such as centrifugation, chromatography, electrophoresis, and membrane filtration for the purification of biomolecules.
- 3. To develop analytical skills in protein purification and quantification using techniques like affinity chromatography, precipitation, dialysis, and spectrophotometry.

CO No.	Course Outcome (COs)	
CO1	Understand fundamental principles of bioseparation techniques, including	K1
	centrifugation, chromatography, and electrophoresis.	
CO2	Explain the mechanisms and applications of different cell disruption	K2
	techniques for extracting intracellular biomolecules.	
CO3	Apply various chromatographic and precipitation methods for the	K3
	purification and separation of proteins and nucleic acids.	
CO4	Analyze the efficiency of membrane filtration techniques for biomolecule	K4
	concentration and contaminant removal.	
CO5	Evaluate protein purification strategies using affinity chromatography and	K4
	electrophoresis.	
CO6	Perform protein quantification using spectrophotometric methods such as the	K3
	Bradford and Lowry assays.	

#### **COURSE OUTCOME :**

Experiment 1: Cell Disruption Techniques	TOTAL
Introduction to mechanical and non-mechanical methods for cell disruption	60
(sonication, homogenization, chemical lysis).	HOURS
Extraction of intracellular proteins from microbial cells.	
Experiment 2: Centrifugation Techniques	
Theory and applications of centrifugation in bioseparation.	
Differential centrifugation and density gradient centrifugation for separating cellular	
components.	
Experiment 3: Chromatography Techniques	
Paper Chromatography: Separation of amino acids or plant pigments.	



## W E S T B E N G A L

Thin Layer Chromatography (TLC): Separation of lipids or small molecules. Gel Filtration Chromatography: Separation of proteins based on molecular size. Ion Exchange Chromatography: Separation of proteins or nucleic acids based on charge. **Experiment 4: Electrophoresis Techniques** Agarose Gel Electrophoresis: Separation of DNA fragments by size. Polyacrylamide Gel Electrophoresis (SDS-PAGE): Separation and molecular weight determination of proteins. **Experiment 5: Precipitation Techniques** Protein precipitation using ammonium sulfate or organic solvents. Dialysis for removing small molecules from protein samples. **Experiment 6: Membrane Filtration Techniques** Use of ultrafiltration and microfiltration for concentrating proteins or removing contaminants from biological samples. **Experiment 7: Affinity Chromatography** Purification of enzymes or proteins using specific ligands bound to a solid support matrix. Elution of bound proteins and analysis of purity.

#### **Experiment 8: Protein Quantification**

Bradford or Lowry method for protein estimation. Spectrophotometric analysis of protein concentration.



Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 5 th Sem.	
Course Title:Food and Pharmaceutical Biotechnology lab	Subject Code: TIU-UBT-MJ-L31302	
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 2	

#### **Course Objective:**

**1** To develop an understanding of microbial fermentation and enzyme activity for food and pharmaceutical applications, focusing on factors affecting fermentation processes and enzymatic reactions.

2. To equip students with hands-on experience in food preservation, bioactive compound extraction, and quality control techniques, enabling them to analyze food safety and pharmaceutical formulations.

2. To apply biotechnological methods in drug formulation, herbal medicine analysis, and pharmaceutical quality assessment, ensuring students gain practical skills for industrial and research applications.

CO No.	Course Outcome (COs)	
CO1	Understand the principles and processes of microbial fermentation and its role in food biotechnology.	K1
CO2	Explain the methods of enzyme isolation, activity assays, and their applications in food and pharmaceutical industries.	K2
CO3	Apply different food preservation techniques and assess their effectiveness in preventing microbial contamination.	K3
CO4	Analyze the extraction and characterization of bioactive compounds from plant and microbial sources.	K4
CO5	Evaluate the quality and safety of food and pharmaceutical products using microbiological and chemical analysis.	K4
CO6	Perform drug formulation techniques and assess the stability and potency of pharmaceutical products.	K3

#### **COURSE OUTCOME :**



Experiment 1: Microbial Fermentation	TOTAL 60
Conduct fermentation processes using various microorganisms to produce	HOURS
fermented food products (e.g., yogurt, sauerkraut).	
Study the factors affecting fermentation (temperature, pH, time).	
Experiment 2: Enzyme Activity Assays	
Isolate enzymes from microbial or plant sources.	
Measure the activity of enzymes (e.g., amylase, protease) using	
spectrophotometric methods	
Experiment 3: Food Preservation Techniques	
Investigate various methods of food preservation (e.g., refrigeration, canning,	
pickling) and their effects on microbial growth.	
Conduct experiments to assess the effectiveness of preservatives	
Experiment 4: Extraction of Bioactive Compounds	
Extract bioactive compounds (e.g., antioxidants, flavonoids) from plant	
materials using various methods (solvent extraction, maceration).	
Analyze the extracted compounds using chromatography (TLC or HPLC).	
Experiment 5: Quality Control in Food Products	
Perform microbiological analysis of food samples for contamination (using	
plate count, coliform tests).	
Conduct chemical analysis for pH, acidity, and sugar content in food products.	
Experiment 6: Pharmacognosy and Herbal Medicine	
Study the extraction and analysis of bioactive compounds from medicinal	
plants.	
Evaluate the efficacy of herbal extracts using standard assays (e.g.,	
antibacterial activity).	
Experiment 7: Drug Formulation Techniques	
Explore the preparation of pharmaceutical formulations (e.g., tablets,	
emulsions).	
Assess the physical and chemical properties of the formulated products	
Experiment 8: Quality Assessment of Pharmaceutical Products	
Conduct assays to determine the potency and purity of pharmaceutical	
samples.	
Analyze the stability of formulations under different storage conditions.	
<u>L</u>	1



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 6 th Sem.
Course Title:Plant Biotechnology and Molecular Biology	Subject Code: TIU-UBT-MJ-T32301
Contact Hours/Week: 3-1-0(L–T–P)	Credit: 4

#### **Course Objective:**

**1** To introduce students to fundamental plant tissue culture techniques, including micropropagation, organogenesis, and somatic embryogenesis, for plant propagation and improvement.

2 To explore advanced biotechnological methods, such as haploid production, protoplast isolation, and somatic hybridization, and their applications in crop improvement and genetic engineering.

3 To understand the role of plant growth-promoting bacteria in agriculture, including nitrogen fixation, biocontrol of pathogens, and plant growth enhancement through microbial interactions. **COURSE OUTCOME :** 

CO No.	Course Outcome (CO)	
CO1	Define fundamental concepts of plant tissue culture, including cryo and	K1
	organogenic differentiation.	
CO2	Explain various micropropagation techniques and their applications in plant	K2
	biotechnology.	
CO3	Apply knowledge of in vitro haploid production techniques for genetic	K3
	improvement in plants.	
CO4	Analyze the process of protoplast isolation, fusion, and somatic hybridization	K4
	for plant breeding.	
CO5	Evaluate the significance of somaclonal variation in plant biotechnology and	K4
	its applications.	
CO6	Assess the role of plant growth-promoting bacteria in nitrogen fixation,	K4
	biocontrol, and plant health improvement.	



•

MODULE 1:	12 Hours		
Introduction, Cryo and organogenic differentiation, Types of culture: Seed , Embryo, Callus,			
Organs, Cell and Protoplast culture. Micropopagation Axillary bud proliferation, Meristem and			
shoot tip culture, cud culture, organogenesis, embryogenesis, advantages and disad	lvantages of		
micropropagation. (15 Periods)			
MODULE 2:	12 Hours		
In vitro haploid production Androgenic methods: Anther culture, Microspore culture	ire		
andogenesis Sgnificance and use of haploids, Ploidy level and chromosome doubl	ng,		
diplodization, Gynogenic haploids, factors effecting gynogenesis, chromosome eli	mination		
techniques for production of haploids in cereals. (20 Periods)			
MODULE 3:	12 Hours		
Protoplast Isolation and fusion Methods of protoplast isolation, Protoplast development, Somatic			
hybridization, identifiation and selection of hybrid cells, Cybrids, Potential of somatic			
hybridization limitations. Somaclonal variation Nomenclautre, methods, applications basis and			
disadvantages. (15 Periods)			
Module 4 9 hours			
Plant Growth Promoting bacteria. Nitrogen fixation, Nitrogenase, Hydrogenase, Nodulation,			
Biocontrol of pathogens, Growth promotion by free-living bacteria. (10 Periods)			
TOTAL LECTURES	45 Hours		



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	<b>Year, Semester: 3rd</b> Yr., 6 th Sem.
Course Title: Animal physiology	Subject Code: TIU-UBT-MJ-T32303
<b>Contact Hours/Week</b> : 3-1-0(L–T–P)	Credit: 4

#### **Course Objective:**

**1** To introduce students to fundamental plant tissue culture techniques, including micropropagation, organogenesis, and somatic embryogenesis, for plant propagation and improvement.

2 To explore advanced biotechnological methods, such as haploid production, protoplast isolation, and somatic hybridization, and their applications in crop improvement and genetic engineering.

3 To understand the role of plant growth-promoting bacteria in agriculture, including nitrogen fixation, biocontrol of pathogens, and plant growth enhancement through microbial interactions.

CO No.	Course Outcome (CO)	
CO1	Describe the mechanisms of digestion, absorption, and respiration in	K1
	animals.	
CO2	Explain the composition of blood, the process of blood coagulation, and the	K2
	physiology of circulation.	
CO3	Illustrate the structure and functions of different muscle types and analyze	K3
	the mechanism of muscle contraction.	
CO4	Examine the process of osmoregulation, urine formation, and different	K4
	excretion modes in animals.	
CO5	Analyze the mechanism of nerve impulse conduction and the role of	K4
	neurotransmitters in neural coordination.	
CO6	Evaluate the functions of endocrine glands, hormone action mechanisms, and	K4
	disorders due to hormonal imbalances.	

#### **COURSE OUTCOME :**



COURSE CONT	CENT :		
MODULE 1:			15 Hours
Digestion and Respiration (15 Period)			
Digestion: Mechanism of digestion & absorption of carbohydrates, Proteins, Lipids and nucleic			
acids. Compositio	on of bile, Saliv	va, Pancreatic, gastric and intestinal juice Respiration	on: Exchange
of gases, Transpor	rt of O2 and C	O2, Oxygen dissociation curve, Chloride shift.	
MODULE 2:			15 Hours
Composition of b	lood, Plasma p	roteins & their role, blood cells, Haemopoisis, Med	chanism of
coagulation of blo	od. Mechanisr	m of working of heart: Cardiac output, cardiac cycl	e, Origin &
conduction of hea	rtbeat.		
MODULE 3:			15 Hours
Muscle physiolog	gy and osmore	egulation (15 Period)	
Structure of cardia	ac, smooth & s	skeletal muscle, threshold stimulus, All or None rul	e,
singlemuscle twite	ch, muscle ton	e, isotonic and isometric contraction, Physical, che	mical &
electricalevents of	f mechanism o	f muscle contraction. Excretion: modes of excretion	n, Ornithine
cycle, Mechanism	of urine form	ation.	
Module 4		15 hours	
Nervous and endocrine coordination(18 Period)			
Mechanism of generation & propagation of nerve impulse, structure of synapse, synaptic			
conduction, saltatory conduction, Neurotransmitters Mechanism of action of hormones (insulin			
and steroids) Different endocrine glands- Hypothalamus, pituitary, pineal, thymus, thyroid,			
parathyroid and adrenals, hypo & hyper-secretions.			
TOTAL LECTURES 45 Hours			



### WESTBENGAL

Program: B. Sc. in BiotechYear, Semester: 3 rd Yr., 6 th Sem.		
<b>Course Title:</b> Recombinant DNA technology	Subject Code: TIU-UBT-MJ-T32302	
Contact Hours/Week: 3-1-0 (L–T–P)	Credit: 4	

#### **Course Objective:**

To introduce the fundamental principles of recombinant DNA technology, including 1. molecular tools, gene transfer techniques, and cloning vectors.

2. To develop an understanding of genome mapping, genetic engineering techniques, and their applications in animals, plants, and microbial systems.

3. To equip students with knowledge of advanced genetic manipulation techniques, including mutagenesis, protein engineering, and transgenic technology for biotechnological applications.

#### **COURSE OUTCOME :**

0001		
CO	Course Outcome (CO)	
No.		
CO1	Describe molecular tools such as restriction enzymes, ligases, polymerases, and	K1
	their applications in genetic engineering.	
CO2	Explain various gene transfer techniques, including transformation,	K2
	electroporation, and microinjection, and their role in recombinant DNA	
	technology.	
CO3	Illustrate and compare genomic and cDNA libraries, and analyze different	K3
	screening techniques for recombinant selection.	
CO4	Analyze the principles and applications of DNA fingerprinting, restriction	K4
	mapping, and hybridization techniques in genome mapping.	
CO5	Evaluate mutagenesis techniques such as random and site-directed mutagenesis	K4
	and their role in protein engineering.	
CO6	Assess genetic engineering applications in plants and animals, including	K4
	transgenic organisms and therapeutic protein production.	



MODULE 1:	15 Hours		
Molecular tools and applications- restriction enzymes, ligases, polymerases,			
alkalinephosphatase. Gene Recombination and Gene transfer: Transformation, Episomes,			
Plasmids andother cloning vectors (Bacteriophage-derived vectors, artificial chron			
Microinjection, Electroporation, Ultrasonication, Principle and applications of Poly	merase chain		
reaction (PCR), primer-design, and RT- (Reverse transcription) PCR.			
MODULE 2:	15 Hours		
Restriction and modification system, restriction mapping. Southern and Northern			
hybridization. Preparation and comparison of Genomic and cDNA library, screening	g of		
recombinants, reversetranscription,. Genome mapping, DNA fingerprinting, Appli			
Genetic EngineeringGenetic engineering in animals: Production and applications of			
mice, role of ES cellsin gene targeting in mice, Therapeutic products produced by	genetic		
engineering-blood proteins, human hormones, immune modulators and vaccines (o	ne example		
each).			
	10.11		
MODULE 3:	10 Hours		
Random and site-directed mutagenesis: Primer extension and PCR based methods			
directed mutagenesis, Random mutagenesis, Gene shuffling, production of chimeri	c proteins,		
Proteinengineering concepts and examples (any two).			
Module 4 5 hours			
Genetic engineering in plants: Use of Agrobacterium tumefaciens and A. rhizogenes,			
Tiplasmids, Strategies for gene transfer to plant cells, Direct DNA transfer to plants,			
Genetargeting in plants, Use of plant viruses as episomal expression vectors.			
TOTAL LECTURES	45 Hours		



#### **Department of Biotechnology**

Year, Semester: 3 rd Yr., 6 th Sem.
Subject Code: TIU-UBT-MI-T32201
Credit: 4

#### **Course Objective:**

- 1. To introduce the fundamental principles of Geographic Information Systems (GIS) and Remote Sensing, including data models, coordinate systems, and image acquisition techniques.
- 2. To develop practical skills in GIS data analysis and remote sensing image processing, such as spatial analysis, thematic mapping, image classification, and change detection.
- 3. To explore the integration of GIS and remote sensing for real-world applications, including environmental monitoring, agriculture, urban planning, disaster management, and biodiversity conservation.

CO No.	Course Outcome	
CO1	Define fundamental concepts of GIS and remote sensing, including spatial and non-spatial data, coordinate systems, and data models.	K1
CO2	Explain the principles of remote sensing, electromagnetic spectrum interactions, image acquisition techniques, and GIS data management processes.	K2
CO3	Apply GIS tools and remote sensing techniques to analyze spatial data, perform thematic mapping, and conduct spatial and geostatistical analysis.	K3
CO4	Utilize image processing techniques, including classification, change detection, and advanced image enhancement, for real-world applications.	K3
CO5	Examine the integration of GIS and remote sensing in various domains such as environmental monitoring, disaster management, and urban planning.	K4
CO6	Assess emerging trends in GIS and remote sensing, including AI, big data, UAVs, and IoT-based geospatial applications.	

#### **COURSE OUTCOME :**



MODULE 1:	10 Hours
Introduction to Geographic Information Systems (GIS)(10 Period)Definition and Concepts: Understanding GIS, spatial and non-spatial data, geogrphenomena.Components of GIS: Hardware, software, data, people, and methods.Data Models in GIS: Vector and raster data, attribute data, topology.Coordinate Systems: Geographic coordinate system, map projections, datum.Data Input and Management: Data sources, data entry (digitization, scanning), ormanagement systems (DBMS).	-
MODULE 2:	10 Hours
Remote Sensing: Principles and Basics       (10 Period)	10 110015
sources and energy interactions with the Earth's surface. <b>Remote Sensing Platforms and Sensors</b> : Aerial and satellite platforms, types of (optical, microwave, thermal), passive vs. active sensors. <b>Resolution</b> : Spatial, spectral, radiometric, and temporal resolutions. <b>Image Acquisition and Preprocessing</b> : Image calibration, correction for geometric atmospheric distortions, image enhancement.	
MODULE 3:	10 Hours
Data Analysis in GIS(10 Period)	
<ul> <li>Spatial Analysis: Overlay, buffer analysis, spatial interpolation, proximity analysis network analysis.</li> <li>Thematic Mapping: Cartographic representation, map symbols, and thematic lay Data Query and Manipulation: Attribute-based queries, spatial queries, and map Geostatistical Analysis: Point pattern analysis, autocorrelation, and trend analysis</li> </ul>	ers. ) algebra.
Module 4 10 Hours	
	dex, and other



## W E S T B E N G A L

MODULE 5		10 Hours		
Integration of GIS and Remote Sensing (10 Period)				
Data Integration: Linking remo	ote sensing data with GIS, raster-	vector integration		
Applications of GIS and Remo	ote Sensing:			
<b>Environmental Monitoring</b> : F	orest mapping, soil erosion, clima	ate change.		
Agriculture: Precision farming.	, crop yield estimation, soil mapp	ing.		
Urban Planning: Land-use map	pping, infrastructure planning, tra	insportation.		
Disaster Management: Flood r	napping, landslide risk analysis,	earthquake impact	t assessment.	
<b>Biodiversity and Wildlife Mar</b>	nagement: Habitat analysis, spec	es distribution, an	nd	
conservation planning.				
Case Studies: Real-world exam	ples of GIS and RS applications	in various sectors.		
MODULE 5		10 Hours		
Future Trends in GIS and Remote Sensing(10 Period)				
Emerging Technologies: Artifi	cial intelligence in remote sensin	g, machine learnir	ng for image	
analysis, deep learning applicati	ions.			
Big Data and Cloud Computin	ng in GIS: Cloud-based GIS plat	forms, handling la	rge datasets,	
real-time GIS analysis.				
Unmanned Aerial Vehicles (UAVs) in Remote Sensing: Use of drones in data collection and				
mapping.				
Geospatial Technologies in IoT and Smart Cities: Integration of GIS in smart city planning,				
sensors, and real-time monitoring.				
TOTAL S			60 Hours	
IUIALS			00 110015	



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 6 th Sem.
Course Title: Plant Biotechnology Lab	Subject Code: TIU-UBT-MJ-L32301
Contact Hours/Week: 0-0-4 (L–T–P)	Credit: 2

#### **Course Objective:**

**1.** To develop practical skills in plant tissue culture techniques, including explant selection, sterilization, and inoculation for successful in vitro plant propagation.

2. To understand and perform callus culture, suspension culture, and induction of growth, focusing on meristematic tissues for plant regeneration and genetic studies.

3. To analyze and estimate biologically important plant products, including secondary metabolites, enzymes, and other bioactive compounds essential for plant physiology and biotechnology applications.

<b>Course Outcome</b>	Description	
(CO)		
CO1	Understand the principles and procedures for explant selection, sterilization, and inoculation in plant tissue culture.	K1
CO2	Demonstrate the ability to initiate and maintain callus culture from meristematic tissues and perform suspension culture techniques.	K2
CO3	Apply techniques for anther and pollen culture to develop haploid plants and study their significance in plant breeding.	K3
CO4	Analyze the factors affecting plant tissue growth and differentiation in vitro.	K4
C05	Estimate and quantify biologically important plant products, including secondary metabolites, using biochemical methods.	K3
CO6	Evaluate the advantages and limitations of various plant biotechnology techniques for large-scale plant production.	K4

#### **COURSE OUTCOME :**

Explant selection, sterilization and inoculation	Total 60
Callus culture from meristimatic tissue and induction of growth, suspension	hours
culture	
Anther and Pollen culture	
Estimation of biologically important plant products	



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 3 rd Yr., 6 th Sem.
<b>Course Title:</b> Mammalian physiology lab	Subject Code: TIU-UBT-MI-L32251
Contact Hours/Week: 0-0-4 (L–T–P)	Credit: 2

#### **Course Objective:**

**1** To develop practical skills in hematological analysis, including blood coagulation time, blood grouping, and red blood cell (RBC) counting, for understanding mammalian circulatory physiology.

2 To train students in leukocyte differential counting (TLC & DLC) and hemoglobin estimation, enabling them to assess immune function and oxygen-carrying capacity in mammals.

3 To introduce students to enzymatic activity in physiological processes, through experiments demonstrating enzyme action and its role in metabolism.

### **COURSE OUTCOME :**

CO No.	Course Outcome (CO)	
CO1	Recall the principles and procedures for hematological assessments, including blood coagulation, blood grouping, and RBC counting.	K1
CO2	Explain the physiological significance of total leukocyte count (TLC) and differential leukocyte count (DLC) in immune response and disease detection.	K2
CO3	Describe the role of hemoglobin in oxygen transport and its clinical importance, demonstrated through hemoglobin estimation.	K2
CO4	Perform laboratory techniques such as blood sample preparation, counting RBCs, and analyzing hematological parameters with accuracy.	K3
CO5	Demonstrate enzyme activity and interpret its role in metabolic processes through experimental analysis.	K3
CO6	Evaluate and compare physiological parameters such as blood coagulation time, leukocyte variation, and enzyme function in different biological conditions.	K4

Finding the coagulation time of blood	Total 60 hours
Determination of blood groups	
Counting of mammalian RBCs	
Determination of TLC and DLC	
Demonstration of action of an enzyme	
Determination of Haemoglobin	



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	<b>Year, Semester: 3rd</b> Yr., 6 th Sem.
<b>Course Title:</b> Recombinant DNA technology LAB	Subject Code: TIU-UBT-MJ-L32302
Contact Hours/Week: 0-0-4 (L–T–P)	Credit: 2

#### **Course Objective:**

**1** To develop skills in DNA isolation and purification techniques from plant and microbial sources for genetic analysis and molecular biology applications.

2 To introduce students to recombinant DNA techniques, including plasmid isolation, restriction digestion, and bacterial transformation, for genetic engineering experiments.

3 To familiarize students with molecular biology analytical tools, such as spectrophotometry and PCR, for qualitative and quantitative DNA analysis.

#### **COURSE OUTCOME :**

CO	Course Outcome (CO)	
No.		
CO1	Demonstrate the isolation of chromosomal DNA from plant cells and E. coli.	K2
CO2	Perform qualitative and quantitative analysis of DNA using a spectrophotometer.	К3
CO3	Extract and purify plasmid DNA from bacterial cells.	K3
<b>CO4</b>	Conduct restriction digestion of DNA and analyze the results.	K3
CO5	Develop competent cells and perform transformation experiments.	K4
CO6	Explain the principles and applications of Polymerase Chain Reaction	K2
	(PCR) through demonstration.	

Isolation of chromosomal DNA from plant cells. Isolation of chromosomal DNA from <i>E.coli</i> Qualitative and quantitative analysis of DNA using spectrophotometer.	Total 60 hours
Plasmid DNA isolation Restriction digestion of DNA	
Making competent cells	
Transformation of competent cells	
Demonstration of PCR	



Department of Biotechnology		
<b>Program:</b> B. Sc. in Biotech <b>Year, Semester:</b> 4 th year, 7 th sem		
Course Title:Genomics and proteomics and bioinformaticsSubject Code: TIU-UBT-MJ-T4140		
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4	

#### **Course Objective:**

1 To understand the principles and techniques of genome analysis, including gene prediction, sequencing methods, genome-wide association studies, and functional annotation in prokaryotic and eukaryotic systems.

2 To explore proteomics techniques, such as protein separation, identification using mass spectrometry, post-translational modifications, and their applications in functional and interaction proteomics.

3 To apply bioinformatics tools and databases for genome research, microarray data analysis, protein structure prediction, and system biology approaches to study biological networks.

Course	Description	
Outcome (CO)		
CO1	Explain the concepts of gene prediction, genome sequencing, and annotation techniques in prokaryotic and eukaryotic systems.	K2
CO2	Apply functional genomics approaches, such as sequence and structure-based methods, for gene function assignment.	K3
CO3	Analyze transcriptome data using databases, microarray technology, and computational tools for gene expression studies.	K4
CO4	Demonstrate knowledge of proteomics techniques, including 2D electrophoresis, mass spectrometry, and protein identification.	K2
CO5	Utilize bioinformatics tools and databases for genome and proteome analysis, structural predictions, and biological data interpretation.	K3
CO6	Evaluate the applications of genomics and proteomics in medicine, synthetic biology, bioengineering, and conservation.	K4

#### **Course outcomes**



### COLIDSE CONTENT

COURSE CONTENT :		
MODULE	20 hours	
1:		
<b>GENE AND GENOME ANALYSIS</b> : Gene prediction in prokaryotes Genome-wide association (GWA) analysis -Massively parallel Signatur Whole genome Shotgun sequencing, Next Generation Sequencing (NG physical mapping - GDB, NCBI, OMIM, NGI/MGD - Structural annot annotation - Limitation of genomics	re sequencing (MPSS), S) - Cytogenetic and	
<b>Functional genomics: Functional genomics: Application of sequence</b> <b>based approaches to assignment of gene functions</b> – e.g. sequence c <b>analysis (especially active sites, binding sites) and comparison, patt</b> Developmental biology and Differential gene expression, Microarray ar	omparison, structure ern identification, etc.	
Transcriptome Analysis: Databases and basic tools: Gene Expression Omnibus (GEO), ArrayExpress, SAGE databases DNA microarray: understanding of microarray data, normalizing microarray data, detecting differential gene expression, correlation of gene expression data to biological process and computational analysis tools (especially clustering approaches), RNA Sequencing Use of various derived databases in function assignment, use of SNPs for identification of genetic traits. Gene/Protein function prediction using Machine learning tools viz. Neural network, SVM etc., Applications of Genomics: Genomic medicine - Synthetic biology and bioengineering - Conservation genomics		
MODULE 2:	20 Hours	
PROTEOMICS	l	
Protein chemistry to proteomics:		
The proteomics workflow		
Basic of separation sciences: Protein and peptides;		
Two-dimensional electrophoresis (2-DE), Advancement in solubiliz		
proteins, development of immobilized pH gradient strips, gel castin image analysis.	ig, staining of gels and	
Two-dimensional fluorescence difference in-gel electrophoresis (DI	GE). Blue native PAGE	
( <b>BN-PAGE</b> ), gel free proteomics methods. Protein identification by mass spectrometry: ESI-		
TOF, MALDI-TOF, MS/MS Post-translational modifications of protein		
proteomics		
MODULE	20 Hours	
3:	20 110u15	
BIOINFORMATICS	I	
Module 1: Biological databases, Biological data sciences in genome	research	



Module 2: Human Genome Project, Microarray Technology Module 3: Bioinformatics for Proteomics, Principles of protein structure, Torsion angles and Ramachandran Plot Module 4: Ontologies and clustering Module 5: System Biology and biological network .BIOINFORMATICS (12 Period) Module 1: Biological databases, Biological data sciences in genome research Module 2: Human Genome Project, Microarray Technology Module 3: Bioinformatics for Proteomics, Principles of protein structure, Torsion angles

and Ramachandran Plot Module 4: Ontologies and clustering

Module 5: System Biology and biological network

TOTAL LECTURES

60 Hours



## WEST BENGAL

### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 7 th sem
<b>Course Title:</b> Nanotechnology and tissue engineering	Subject Code: TIU-UBT-MJ-T41402
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

#### **Course Objective:**

**1.** To introduce fundamental concepts of nanotechnology and biomaterials, including their synthesis, properties, and characterization techniques, with a focus on applications in biotechnology and medicine.

2/ To explore the role of nanomaterials in drug delivery, diagnostics, and tissue engineering, emphasizing their biomedical applications, biocompatibility, and potential for regenerative medicine.

3. To understand scaffold fabrication techniques and ethical, regulatory, and commercialization aspects of nanotechnology and biomaterial science for biomedical and industrial applications. **Course outcomes** 

Course Outcome (CO)	Description	
CO1	Explain the fundamental concepts of nanotechnology, types of nanomaterials, their synthesis, properties, and characterization techniques.	K2
CO2	Analyze the role of nanomaterials in drug delivery, targeted therapies, nanotoxicity, and biomedical diagnostics.	K4
CO3	Describe the principles of tissue engineering, biomaterials used for scaffold development, and cellular interactions in tissue regeneration.	K2
CO4	Evaluate the application of nanomaterials in tissue engineering, including bone, neural, and wound healing applications.	K4
CO5	Apply knowledge of scaffold fabrication techniques, including electrospinning, 3D bioprinting, and hydrogel preparation, for tissue engineering applications.	К3
CO6	Discuss ethical, regulatory, and commercialization aspects of nanomaterials and tissue engineering in biomedical applications.	K2



MODULE 1:		10 hours		
1:Introduction to Nanomaterials and Nanotechnology(10 Period)Introduction to Nanotechnology: Definition, history, and applications in biotechnology and medicine. Types of Nanomaterials: Nanoparticles, nanofibers, nanowires, carbon nanotubes, and quantum dots.Synthesis of Nanomaterials: Top-down vs. bottom-up approaches, chemical vapor deposition, sol-gel method, and electrospinning. Properties of Nanomaterials: Size-dependent properties 				
MODULE 2:		10 hours		
Nanomaterials in Drug Delivery and Medical Applications (10 Period) Nanocarriers for Drug Delivery: Liposomes, dendrimers, polymeric nanoparticles, metallic nanoparticles, and nanomicelles. Mechanisms of Drug Release: Controlled and targeted drug delivery systems, stimulus-responsive nanocarriers (pH, temperature, magnetic field). Nanomaterials in Cancer Therapy: Nanoparticles for drug delivery, photothermal therapy, and targeted cancer therapies. Nanotoxicity and Biosafety: Toxicity assessments of nanomaterials, nanomaterial-cell interactions, and regulatory guidelines for biomedical nanomaterials. Nanomaterials in Diagnostics: Quantum dots, gold nanoparticles, and nanobiosensors for disease diagnosis.				
MODULE 3:		8 Hours		
Fundamentals of Tissue Engineering Tissue Engineering Overview: Definition, scope, and key components (cells, scaffolds, and growth factors). Biomaterials in Tissue Engineering: Natural (collagen, gelatin, chitosan) and synthetic materials (PLGA, PEG, PCL), biocompatibility, and biodegradability. Scaffold Design Principles: Structural properties of scaffolds, porosity, mechanical strength, and surface modification for cell attachment and growth. Cell Sources for Tissue Engineering: Stem cells (embryonic, adult, and induced pluripotent), progenitor cells, and primary cells. Growth Factors and Signaling Molecules: Role of cytokines, hormones, and ECM proteins in tissue regeneration.				
Module 4	10 hours			
Nanostructured Scaffolds: Nanofibrous scaffolds, nanocomposites, and their role in enhancing cell proliferation and differentiation. Nanomaterials for Bone Tissue Engineering: Hydroxyapatite nanoparticles, bioactive glass, and composites for bone regeneration.				



## W E S T B E N G A L

Nanomaterials in Skin and Wound Healing: Nanofibers, hydrogels, and nano-based dressings for accelerated tissue repair. Nanotechnology in Neural Tissue Engineering: Conductive nanomaterials for nerve regeneration, nerve guidance conduits, and applications in neuroprosthetics. Smart Biomaterials: Stimuli-responsive scaffolds (temperature, pH, and magnetic field) and their applications in controlled tissue regeneration.

Module 5	10 hours			
Scaffold Fabrication Techniques and Applications (10 Period)				
Scaffold Fabrication Technique	s: Electrospinning, 3D bioprinting, freeze-drying, solvent			
	ods. Hydrogels in Tissue Engineering: Hydrogel properties,			
	soft tissue regeneration. 3D Bioprinting: Overview, bioinks, and			
	and tissue regeneration. Applications in Tissue Engineering:			
Bone and cartilage regeneration, cardiovascular tissue engineering, skin regeneration, and				
organoid development. Bioreactors in Tissue Engineering: Role of bioreactors in dynamic				
culture environments, improvin	g scaffold-cell interactions, and tissue maturation			
Module 6	10 hours			
Ethical, Regulatory, and Comm	ercial Aspects of Nanomaterials and Tissue Engineering			
(10 Period)				
	challenges in tissue engineering, use of stem cells, and			
nanomaterials in medicine. Regulatory Guidelines: FDA and EMA guidelines for nanomaterials				
and tissue-engineered products, clinical trials, and safety assessments. Nanotechnology in				
Commercialization: Patenting issues, intellectual property rights, commercialization challenges,				
and market potential of tissue-engineered products. Future Trends and Innovations: Emerging				
trends in nanotechnology and tissue engineering, advancements in 4D bioprinting, and synthetic				
biology applications.				

TOTAL LECTURES

60 Hours



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 7 th sem
Course Title: Agricultural biotechnology	Subject Code: TIU-UBT-MI-T41301
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

#### **Course Objective:**

**1**. To introduce fundamental concepts of agricultural biotechnology, including traditional and modern approaches to crop improvement, genetic engineering, and molecular breeding techniques.

2 To explore the applications of biotechnology in sustainable agriculture, including the development of transgenic crops, biofertilizers, biopesticides, and climate-resilient crop varieties. 3 To understand the role of biotechnology in addressing global agricultural challenges, such as food security, environmental sustainability, and improved crop productivity through genetic modification and advanced breeding techniques.

#### **Course outcomes**

СО	Course Outcome (CO)	
No.		
CO1	Define the fundamental concepts of agricultural biotechnology, including traditional vs. modern agricultural practices and genetic improvement techniques.	K1
CO2	Explain the role of molecular breeding, transgenic crops, and genetic engineering methods such as Agrobacterium-mediated transformation and CRISPR-Cas9 in crop improvement.	K2
CO3	Discuss the impact of agricultural biotechnology on food security, environmental sustainability, and global agricultural challenges.	K2
CO4	Demonstrate the applications of biofertilizers, biopesticides, and microbial inoculants in sustainable agriculture for improving soil fertility and disease resistance.	K3
CO5	Utilize molecular markers and marker-assisted selection (MAS) techniques for stress-tolerant and disease-resistant crop development.	K3
CO6	Evaluate the benefits and challenges of genetically modified (GM) crops, including their environmental impact, regulatory concerns, and future potential in sustainable agriculture.	K4



COURSE CONTENT .		
MODULE 1:	10 hours	
Introduction to Agricultural Biotechnology: Overview of Agricultural Biotechnology	ogy:	
Definition, history, and scope. Traditional vs. Modern Agriculture: Green revolution, plant		
breeding, and the role of biotechnology in modern agriculture. Genetic Basis of Cr	rop	
Improvement: Mendelian genetics, quantitative trait loci (QTL), and molecular ma	arkers in plant	
breeding. Applications of Agricultural Biotechnology: Pest-resistant crops, herbici	ide-tolerant	
crops, drought-resistant crops, and biofortified crops.		
Global Impact: Biotechnology in addressing food security, crop productivity, and	environmental	
sustainability. (10 Period)		
MODULE 2:	10 Hours	
Genetic Engineering and Transgenic Crops: Introduction to Plant Genetic Enginee	ring: Basic	
tools of genetic engineering (vectors, gene cloning, and gene transfer techniques). Methods of		
Gene Transfer: Agrobacterium-mediated transformation, biolistics (gene gun), and		
electroporation.		
Transgenic Crops: Bt crops, herbicide-tolerant crops, virus-resistant crops, and the	ir commercial	
applications. Molecular Breeding and Marker-Assisted Selection (MAS): Role of the	molecular	
markers in crop improvement, MAS in developing stress-tolerant and disease-resis		
Gene Editing Technologies: CRISPR-Cas9 and its applications in crop genome Me	odification.	
(10 Period)		
	-	
MODULE 3:	10 Hours	
Agricultural Biotechnology for Sustainable Agriculture: Biotechnology for Crop Disease		
Management: Development of resistant varieties through genetic engineering, RNAi, and		
biocontrol agents. Biofertilizers and Biopesticides: Microbial inoculants, nitrogen-fixing		
bacteria, and the role of biofertilizers in sustainable farming. Biotechnology for Soil Health		
Improvement: Bioremediation of contaminated soils, microbial management for nutrient		
recycling, and improving soil fertility using biotechnology. Genetically Modified (GM) Crops in		
Sustainable Agriculture: Environmental impact, reduced chemical use, and challenges related to		
GM crops. Climate-Resilient Crops: Developing crops resistant to drought, salinity, and extreme		
temperatures using biotechnology. (10 Period)		

TOTAL LECTURES

**30 Hours** 



# TECHNO INDIA UNIVERSITY WESTBENGAL

Department	of	Biotechnology
------------	----	---------------

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 7 th sem
Course Title:MULTI OMICS TECHNIQUE LAB	Subject Code: TIU-UBT-MJ-L41401
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

#### **Course Objective:**

1. To provide hands-on experience in multiomics techniques including genomic DNA and RNA extraction, protein isolation, and metabolite profiling, ensuring proficiency in laboratory protocols.

² To develop analytical skills in molecular biology and bioinformatics, enabling students to assess DNA, RNA, and protein quality, perform qPCR, SDS-PAGE, and LC-MS/MS, and integrate multiomics data.

To equip students with data interpretation and problem-solving abilities for analyzing 3 multiomics datasets, correlating genomic, transcriptomic, proteomic, and metabolomic insights for biological research applications.

Course of	utcomes	
CO No.	Course Outcome (CO)	
CO1	Recall fundamental techniques in genomics, transcriptomics, proteomics, and metabolomics used in biological research.	K1
CO2	Explain the principles and methodologies involved in DNA, RNA, and protein extraction, along with their quality assessments.	K2
CO3	Demonstrate the process of cDNA synthesis and qPCR to analyze gene expression in biological samples.	K3
CO4	Perform SDS-PAGE and LC-MS/MS techniques for protein and metabolite analysis in biological samples.	K3
CO5	Utilize bioinformatics tools to integrate and analyze multi-omics data from genomics, transcriptomics, proteomics, and metabolomics.	K3
CO6	Analyze and interpret multi-omics data to derive meaningful biological insights and correlations between different molecular levels.	K4

Experiment 1: Genomic DNA Isolation Isolation of genomic DNA from plant or microbial samples. Quality assessment of isolated DNA using spectrophotometry and agarose gel electrophoresis.	Total 60 hours
Experiment 2: RNA Extraction and Quantification Extraction of total RNA from plant or animal tissues. Assessment of RNA quality and quantity using gel electrophoresis and	



#### W **BENGAL** E S T

spectrophotometric methods.

Experi ent 3: cDNA Synthesis and qPCR Synthesis of complementary DNA (cDNA) from RNA samples. Performing quantitative PCR (qPCR) to analyze gene expression levels.

**Experiment 4: Protein Extraction and SDS-PAGE** Extraction of proteins from biological samples. Separation of proteins using SDS-PAGE and visualization through Coomassie staining.

Experiment 5: LC-MS/MS for Metabolomics Sample preparation for liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Analysis of metabolite profiles in biological samples.

Experiment 6: Data Integration and Analysis Use of bioinformatics tools to integrate and analyze data from genomics, transcriptomics, proteomics, and metabolomics. Interpretation of multi-omics data to identify key biological insights.



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 7 th sem
Course Title:Nanotechnology Lab	Subject Code: TIU-UBT-MJ-L41402
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

#### **Course Objective:**

**1.** To introduce students to nanoparticle synthesis techniques – Provide hands-on experience in the synthesis of silver and gold nanoparticles using different methods.

2. To familiarize students with nanoparticle characterization techniques – Train students in the use of UV-Vis spectroscopy, microscopy, and stability testing for analyzing nanoparticle properties.

3 To explore the biomedical applications of nanotechnology – Demonstrate the role of nanoparticles in drug delivery systems and their significance in biotechnology and medicine. **Course outcomes** 

Course	Description	
Outcome (CO)		
CO1	Describe the fundamental principles of nanoparticle synthesis and characterization techniques.	K1
CO2	Explain the role of UV-Vis spectroscopy and microscopy in nanoparticle characterization.	K2
CO3	Perform hands-on synthesis of silver and gold nanoparticles and assess their physicochemical properties.	K3
CO4	Analyze nanoparticle stability using laboratory techniques and evaluate their biocompatibility.	K4
CO5	Compare different microscopy techniques for nanoparticle observation and characterization.	K4
CO6	Demonstrate the application of nanoparticles in drug delivery systems and biomedical applications.	K3

Experiment 1: Synthesis of Silver Nanoparticles	
Experiment 2: Characterization of Nanoparticles using UV-Vis Spectroscopy	hours
Experiment 3: Synthesis of Gold Nanoparticles	
Experiment 4: Microscopy Techniques for Nanoparticle Observation	
Experiment 5: Nanoparticle Stability Testing	
Experiment 6: Applications of Nanoparticles in Drug Delivery	7



Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 3 RD Yr., 5th Sem.	
Course Title: Research Project	Subject Code:TIU-UBT-SEC-P4101	
Contact Hours/Week: 0–0–8 (L–T–P)	Credit: 4	

#### **Course Objectives:**

- 1. To provide hands-on research experience in biotechnology.
- 2. To develop scientific inquiry, problem-solving, and analytical skills.
- 3. To enhance the ability to plan, execute, and report a research project.
- 4. To improve communication skills through presentations and report writing.

CO Number	Course Outcome	Knowled
		ge Level
CO1	Demonstrate the ability to identify a relevant research problem in biotechnology.	K2
CO2	Apply biotechnological techniques and tools in experimental work.	K3
CO3	Analyze and interpret experimental data using appropriate methods.	K4
CO4	Formulate conclusions based on scientific data and observations.	K4
CO5	Communicate research findings effectively through written reports and oral presentations.	K3
CO6	Work effectively as part of a research team, demonstrating responsibility and initiative.	K3



#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem	
Course Title: Animal Biotechnology	Subject Code TIU-UBT-MJ-T42401	
Contact Hours/Week: 3-1-0 (L–T–P)	Credit: 4	

#### **Course Objective:**

**1** To provide fundamental knowledge of animal cell culture techniques – Introduce students to laboratory requirements, aseptic techniques, cell culture types, characterization, and maintenance of cell lines.

2 To educate students on animal diseases and their management – Explain disease diagnosis, therapy, transmission modes, and strategies for disease control and prevention.

3 To explore advanced techniques in animal biotechnology – Cover stem cell manipulation, transgenic animal production, gene modification methods, and ethical considerations in biotechnology.

#### **Course outcomes**

CO No.	Course Outcome (CO)	
CO1	Explain the fundamental concepts and laboratory techniques of animal cell culture, including aseptic handling and sterilization methods.	K1
CO2	Describe various types of cell cultures, cell separation techniques, and characterization of cell lines for biotechnological applications.	K2
CO3	Apply techniques for scaling up cell culture, cryopreservation, and viability assays to maintain and utilize cell lines effectively.	K3
CO4	Analyze the principles of disease transmission, diagnosis, and control measures for managing infectious diseases in animals.	K4
CO5	Demonstrate an understanding of stem cell technology, including embryo micromanipulation and transgenic animal development.	К3
CO6	Evaluate ethical concerns, regulatory aspects, and the impact of transgenic animals in biotechnology and biomedical research.	K4



MODULE		20 hours
1:		
handling area, Instrumentation secondary cell preservation on Trypsinization Development	alture, basic principles, Laboratory requirements for animal cell culture Sterilization of different materials used in animal cell culture, Asep on and equipments for animal cell culture, History of cell culture, Pri- culture, serum free and serum based media, scaling-up, characteriza f cell lines, cytotoxicity and viability assays, Different types of cell h, Cell separation, Continuous cell lines, Suspension culture, Organ of of cell lines, Characterization and maintenance of cell lines, stem ce ion, Common cell culture contaminants. (25 Period)	tic concepts, imary and ation and cultures, culture,
MODULE 2:		20 Hours
	es, diagnosis, therapy, variations of diseases, modes of transmission anagement of disease spreading.	of diseases,
MODULE 3:		20 Hours
animals, retro- knock out anim	cromanipulation of embryos, generation of modified stem cells, tran viruses and DNA microinjection method, transgenic mice, cattle, kn mals, Importance of transgenic animals in biotechnology and ethical s for animal biotechnology. (20 Period)	ock in and



Department	of	Biotec	hno	logy
------------	----	--------	-----	------

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem
<b>Course Title:</b> Medical and pharmaceutical biotechnology	Subject Code TIU-UBT-MJ-T42402
<b>Contact Hours/Week</b> : 3-1-0 (L–T–P)	Credit: 4

#### **Course Objective:**

**1** To provide foundational knowledge of microbial pathogens, their morphology, pathogenesis, virulence factors, and laboratory diagnosis in relation to human health.

2. To explore various infectious diseases caused by bacteria, viruses, fungi, and protozoa, along with their transmission, symptoms, preventive measures, and therapeutic strategies.

3 To develop an understanding of biosafety measures, antimicrobial chemotherapy, and modern pharmaceutical approaches for disease diagnosis and treatment.

#### **Course outcomes**

CO No.	Course Outcome (CO)	
CO1	Define key concepts of medical microbiology, including normal microflora, nosocomial infections, and microbial pathogenicity.	K1
CO2	Describe the morphology, pathogenesis, symptoms, and diagnosis of bacterial infections caused by gram-positive and gram-negative bacteria.	K2
CO3	Explain the molecular mechanisms of viral infections, including those caused by retroviruses, hepatitis viruses, and orthomyxoviruses.	K2
CO4	Analyze fungal and protozoan infections, their pathogenicity, laboratory diagnosis, and therapeutic approaches.	K4
CO5	Apply knowledge of biosafety levels and antimicrobial strategies to assess disease prevention and control measures.	K3
CO6	Evaluate modern pharmaceutical approaches in diagnosing and treating bacterial, viral, fungal, and protozoan infections.	K4

COURSE CONTENT : MODULE 1:

MODULE 1:20 hoursIntroduction: Normal microflora of human body, nosocomial infections, carriers, septic<br/>shock, septicemia, pathogenicity, virulence factors, toxins, biosafety levels. Morphology,<br/>pathogenesis, symptoms, laboratory diagnosis, preventive measures and chemotherapy of<br/>gram positive bacteria: S.aureus, S.pyogenes, B.anthracis, C.perferinges, C.tetani,<br/>C.botulinum, C.diphtheriae M.tuberculosis, M. leprae.

#### MODULE 2:

20 Hours

Morphology, pathogeneis, symptoms, laboratory diagnosis, preventive measures and chemotherapy caused by gram negative bacteria: E.coli, N. gonorrhoea, N. meningitidis, P. aeruginosa, S. typhi, S. dysenteriae, Y. pestis, B. abortus, H. influenzae, V. cholerae, M.



pneumoniae, T. pallidum	M. pneumoniae, Rickettsiaceae, Chla	mydiae.
MODULE 3:		20 Hours
Diseases caused by viruses	- Picornavirus, Orthomyxoviruses, P	aramyxoviruses,
Rhabdoviruses, Reoviruses, Pox virus, Herpes virus, Papova virus, Retro viruses (including HIV/AIDS) and Hepatitis viruses.		
Module 3	2	20 hours
Fungal and Protozoan infections. Dermatophytoses (Trichophyton, Microsporun and Epidermophyton) Subcutaneous infection (Sporothrix, Cryptococcus), systemic infection (Histoplasma, Coccidoides) and opportunistic fungal infections (Candidiasis, Aspergillosis), Gastrointestinal infections (Amoebiasis, Giardiasis), Blood-borne infections (Leishmaniasis, Malaria)		
TOTAL LECTURES		60 Hours



### W E S T B E N G A L

Department of Biotechnology			
Program: B. Sc. in BiotechYear, Semester: 4 th year, 8t ^h sem			
Course Title: IPR	Subject Code TIU-UBT-MI-T42301		
Contact Hours/Week: 3-1-0 (L–T–P)	Credit: 4		

#### **Course Objective:**

- 1. To provide an understanding of Indian patent laws, World Trade Organization (WTO) provisions, and the role of intellectual property in research, design, and development.
- 2. To introduce entrepreneurship concepts related to product selection, development, regulatory frameworks, and economic considerations in biotechnology-based industries.
- 3. To develop awareness about bioethics, biosafety, and regulatory guidelines, including Good Laboratory Practices (GLP) and Good Manufacturing Practices (GMP), for safe and ethical biotechnology applications.

### **COURSE OUTCOMES**

CO	Course Outcome (CO)	
No.		
CO1	Recall fundamental concepts of Indian Patent Law, WTO provisions, and intellectual property rights in biotechnology.	K1
CO2	Explain the significance of intellectual property protection in research, design, and development, including economic and ethical considerations.	K2
CO3	Apply knowledge of entrepreneurship by evaluating product selection, design, economic feasibility, and regulatory compliance.	K3
CO4	Discuss the necessity of bioethics, national and international paradigms, and ethical concerns in molecular biotechnology.	K2
CO5	Implement biosafety measures, containment levels, and good laboratory and manufacturing practices in biotechnological research.	K3
CO6	Analyze the impact of intellectual property rights, bioethics, and biosafety regulations on biotechnology innovation and commercialization.	K4



MODULE 1:			15 hours
Introduction to Indian Patent Law. World Trade Organization and its related intellectual			
property			
		al property and its legal protection in research, des	
development. P	atenting in Biote	echnology, economic, ethical and depository consid	lerations
MODULE 2:			15 Hours
material and en basic regulation	iergy requirement	product, line, design and development processes, e nt, stock the product and release the same for makin mand for a given product, feasibility of its producti	ng etc. The
given constraints of r	aw material, ene	ergy input, financial situations export potential etc.	
MODULE 3:			15 Hours
	•	cs, different paradigms of Bioethics – National & I	international.
Ethical issues against the molecular technologies.			
Module 4		15 hours	
to the concept of		fety and health hazards concerning biotechnology. evel and Good Laboratory Practices (GLP) and Go	
to the concept of	of containment le Practices (GMP	fety and health hazards concerning biotechnology. evel and Good Laboratory Practices (GLP) and Go	



Program: B. Sc. in Biotech	Year, Semester: 3 RD Yr., 6th Sem.	
Course Title: Research Project	Subject Code: TIU-UBT-SEC-P4201	
Contact Hours/Week: 0–0–16 (L–T–P)	Credit: 8	

#### **Course Objectives:**

1.To familiarize students with scientific literature, data collection and interpretation.

2. To improve students' abilities in scientific writing and communication.

3. To enhance students' critical thinking and problem-solving abilities.

CO Number	Course Outcomes	Knowled ge levels
CO1	Identify relevant research problems and formulate hypotheses.	K2
CO2	Conduct literature review and develop an appropriate methodology.	K3
CO3	Implement experiments using laboratory techniques and procedures.	K3
CO4	Demonstrate experiments and validation of results	K4
CO5	Analyze experimental data using statistical and graphical tools.	K4
CO6	Prepare comprehensive scientific reports and communicate findings.	K3



Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem	
Course Title: Ecology and evolution	Subject Code TIU-UBT-MJ-T42403	

#### **Course Objective:**

Contact Hours/Week: 3-1-0(L–T–P)

1. To develop an understanding of ecological principles and ecosystem dynamics, including energy flow, nutrient cycling, species interactions, and ecological succession.

Credit: 4

2. To explore population ecology and evolutionary biology, focusing on population dynamics, species interactions, natural selection, genetic mechanisms, and speciation.

3. To analyze biodiversity conservation strategies and human impact on ecosystems, emphasizing conservation biology, ecological restoration, and evolutionary perspectives in conservation.

#### **Course outcomes**

CO No.	Course Outcome (CO)	
CO1	Recall fundamental concepts of ecology, ecosystem dynamics, ecological	K1
	interactions, and succession.	
CO2	Explain population ecology principles, species interactions, and the	K2
	impact of human activities on biodiversity.	
CO3	Apply evolutionary biology concepts, including natural selection, genetic	K3
	mechanisms, and speciation, to understand biodiversity patterns.	
CO4	Analyze the role of ecological and evolutionary processes in species	K4
	adaptation and ecosystem functioning.	
CO5	Evaluate conservation strategies, biodiversity management, and	K4
	ecological restoration methods for sustainable ecosystems.	
CO6	Assess the evolutionary impact of human activity on ecosystems,	K4
	biodiversity, and species adaptation over time.	



1:       Denote         Introduction to Ecology and Ecosystem Dynamics: Basic Concepts of Ecology: Definition, scope, and history of ecology. Levels of Ecological Organization: Individual, population, community, ecosystem, hoime, and biosphere. Ecosystem Structure and Function: Components of ecosystems, energy flow (trophic levels, food chains, food webs), and nutrient cycling (carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics.         MODULE       20 Hours         2:       Voltation Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulation, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Beha	MODULE		20 hours	
Introduction to Ecology and Ecosystem Dynamics: Basic Concepts of Ecology: Definition, scope, and history of ecology. Levels of Ecological Organization: Individual, population, community, ecosystem, biome, and biosphere. Ecosystem Structure and Function: Components of ecosystems, energy flow (trophic levels, food chains, food webs), and nutrient cycling (carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics. <b>20 Hours 2:</b> Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population, sex ratio, survivorship curves, and life history strategies (r and K selection). Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations. Metapopulations and Dispersal: Concept of metapopulations: Mechanisms of Evolutionary thought, Darwin's theory of natural selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation, endangered species, and biodiversity, and its role in ecosystem Services: Definition, inportance of biodiversity, and its role in ecosystem services in Conservation; Phylogenetics in conservation: Evolutionary Perspectiv			20 110015	
scope, and history of ecology. Levels of Ecological Organization: Individual, population, community, ecosystem, biome, and biosphere. Ecosystem Structure and Function: Components of ecosystems, energy flow (trophic levels, food chains, food webs), and nutrient cycling (carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics. <b>MODULE</b> 2: Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population, size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection). Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations. <b>MODULE</b> 20 Hours 3: Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms <b>Module 3</b> Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, not its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecolo		Ecology and Ecosystem Dynamics: Basic Concepts of Ecology: De	finition.	
community, ecosystem, biome, and biosphere. Ecosystem Structure and Function: Components of ecosystems, energy flow (trophic levels, food chains, food webs), and nutrient cycling (carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics.           MODULE         20 Hours           2:         20 Hours           Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population, sex ratio, survivorship curves, and life history strategies (r and K selection).           Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.           MODULE         20 Hours           3:         20 Hours           Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms           Module 3         20 hours				
of ecosystems, energy flow (trophic levels, food chains, food webs), and nutrient cycling (carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics. MODULE 2: Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection). Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, nich theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations. MODULE 3: Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms Module 3 Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration; Phylogenetics in conservatio	-			
(carbon, nitrogen, phosphorus cycles). Ecological Interactions: Competition, predation, parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics.         MODULE       20 Hours         2:       20 Hours         Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Bevolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation. Biodiversity and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restora	•	• • •	-	
parasitism, mutualism, and commensalism. Ecological Succession: Primary and secondary succession, factors influencing succession, and community dynamics.           MODULE         20 Hours           2:         20 Hours           Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population, size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).           Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         20 Hours           Bis         20 Hours         20 Hours           S:         20 Hours         20 Hours           Bis         20 Hours         20 Hours           S:         20 Hours         20 Hours           Bis         20 Hours         20 Hours           Concept of fitness. Evolution to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and sexual selection. Speciati				
succession, factors influencing succession, and community dynamics.       20 Hours         2:       20 Hours         2:       Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-				
MODULE       20 Hours         2:       Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to envi	± .		j	
2:       Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         S:       Seciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fi			20 Hours	
Population Ecology and Species Interactions Population Dynamics: Population growth models (exponential and logistic growth), carrying capacity, and factors regulating population size (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration; Phylogenetics in Conservation, genetic diversity, and evolutionary resp				
(exponential and logistic growth), carrying capacity, and factors regulating population size         (density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, geneti		blogy and Species Interactions Population Dynamics. Population gro	wth models	
(density-dependent and independent factors). Population Structure: Age distribution, sex ratio, survivorship curves, and life history strategies (r and K selection).         Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human				
survivorship curves, and life history strategies (r and K selection). Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations. <b>MODULE</b> 3: Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms Module 3 Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
Metapopulations and Dispersal: Concept of metapopulations, habitat fragmentation, and         migration. Species Interactions: Keystone species, niche theory, and competitive exclusion         principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate         change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary         thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution:         Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and         Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to         extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic         equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation: n-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration; and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental	• •		, ~ ,	
migration. Species Interactions: Keystone species, niche theory, and competitive exclusion principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.         MODULE       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.       Conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration; and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	-		n. and	
principle. Human Impact on Populations: Overexploitation, habitat destruction, and climate change impacts on biodiversity and populations.       20 Hours         3:       20 Hours         Bevolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.       Conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
Change impacts on biodiversity and populations.       20 Hours         3:       20 Hours         Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.       Conservation, endagered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
MODULE       20 Hours         3:       Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.       Conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
3:       Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.       Conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	<b>U</b> 1		20 Hours	
Evolutionary Biology and Natural Selection: Introduction to Evolution: History of evolutionary thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organismsModule 320 hoursEcology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
thought, Darwin's theory of natural selection, and modern synthesis. Mechanisms of Evolution: Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms Module 3 Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.		Biology and Natural Selection: Introduction to Evolution: History of	evolutionary	
Genetic drift, gene flow, mutation, natural selection, and sexual selection. Speciation and Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms Module 3 20 hours Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
Extinction: Types of speciation (allopatric, sympatric), adaptive radiation, and factors leading to extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms           Module 3         20 hours           Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
extinction. Evolution of Populations: Hardy-Weinberg equilibrium, factors disrupting genetic equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms Module 3 20 hours Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
equilibrium, and the concept of fitness. Evolutionary Adaptations: Behavioral, morphological, and physiological adaptations in organisms           Module 3         20 hours           Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
and physiological adaptations in organisms         Module 3       20 hours         Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.         Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
Module 320 hoursEcology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability.Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	-			
Ecology, Evolution, and Conservation: Biodiversity and Ecosystem Services: Definition, importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
importance of biodiversity, and its role in ecosystem stability. Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	Module 3	20 hours		
Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	Ecology, Evol	ution, and Conservation: Biodiversity and Ecosystem Services: Defin	nition,	
species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	importance of	biodiversity, and its role in ecosystem stability.		
management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	Conservation Biology: Principles of conservation, in-situ and ex-situ conservation, endangered			
management of ecosystems for conservation. Evolutionary Perspectives in Conservation: Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	species, and biodiversity hotspots. Ecological Restoration: Rewilding, habitat restoration, and			
changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.				
changes. Human Evolution and Ecology: Evolution of Homo sapiens, human adaptations, and impacts of human activity on global ecosystems.	Phylogenetics in conservation, genetic diversity, and evolutionary responses to environmental			
impacts of human activity on global ecosystems.				
	impacts of human activity on global ecosystems.			
			60 Hours	



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	otech <b>Year, Semester:</b> 4 th year, 8t ^h sem	
Course Title: Developmental Biology Subject Code: TIU-UBT-MI-T4230		
<b>Contact Hours/Week</b> : 3-1-0(L–T–P)	Credit: 4	

#### **Course Objective:**

**1** To understand the fundamental concepts of developmental biology, including gametogenesis, fertilization, and the classification of eggs based on yolk composition.

2 To explore early embryonic development and differentiation, focusing on cleavage, blastulation, gastrulation, germ layer formation, and embryonic induction.

3 To analyze organogenesis and developmental processes, including neurulation, notogenesis, placental development, and the role of genetic and environmental factors in embryonic differentiation.

#### **Course outcomes**

CO	Course Outcome (CO)	
No.		
CO1	Recall fundamental concepts of developmental biology, including	<b>K1</b>
	gametogenesis, fertilization, and types of eggs.	
CO2	Explain the processes of early embryonic development, including cleavage,	K2
	blastulation, gastrulation, and germ layer formation.	
CO3	Illustrate the mechanisms of embryonic differentiation, including cell	K3
	commitment, embryonic induction, and neural development.	
<b>CO4</b>	Analyze the process of organogenesis, including neurulation, notogenesis,	K4
	and vertebrate eye development.	
CO5	Evaluate the role of genetic and environmental factors in embryonic	K4
	development, differentiation, and adaptation.	
CO6	Assess the significance of extra-embryonic structures such as placental	K4
	development and their role in mammalian development.	



<b>COURSE CONTENT :</b>			
MODULE 1:			20 hours
Gametogenesis and Fertilizati	0 <b>n</b>		
Definition, scope & historical	perspective of development Bio	logy, Gametogen	esis –
Spermatogenesis, Oogenesis F	ertilization - Definition, mecha	nism, types of fer	tilization.
Different types of eggs on the	basis of yolk.		
MODULE 2:			20 Hours
Early embryonic development	;		
Cleavage: Definition, types, pa	atterns & mechanism Blastulat	ion: Process, type	es &
mechanism Gastrulation: Mon	phogenetic movements- epibo	ly, emboly, extens	sion,
invagination, convergence, de-	lamination. Formation & diffe	rentiation of prin	nary germ
layers, Fate Maps in early em	bryos.		
MODULE 3:			20 Hours
Embryonic Differentiation			
	ent and determination- the epi		
	tion, control of differentiation a	U	,
	tion level Concept of embryoni		
	nic induction, Neural induction	and induction of	vertebrate
lens.			
Module 3		20 hours	
Organogenesis	Neu	rulation, notoger	nesis,
development of vertebrate eye. Fate of different primary germlayers Development of			
behaviour: constancy & plasticity, Extra embryonic membranes, placenta in Mammals.			
TOTAL LECTURES			60 Hours



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem
<b>Course Title:</b> Environmental management and bioremediation	Subject Code TIU-UBT-MI-T42303
<b>Contact Hours/Week</b> : 3-1-0(L–T–P)	Credit: 4

#### **Course Objective:**

**1** To provide an understanding of environmental science by exploring its scope, importance, and the principles of sustainability and sustainable development.

2 To analyze ecosystems and biodiversity by studying ecological interactions, conservation strategies, and the impact of human activities on biodiversity.

3 To evaluate environmental challenges and management strategies by examining pollution, climate change, bioremediation techniques, and waste management solutions.

#### **Course outcomes**

CO	Course Outcome (CO)	
No.		
CO1	Recall fundamental concepts of environmental science, including sustainability, ecosystems, and biodiversity.	K1
CO2	Explain ecosystem structures, functions, and ecological interactions with case studies on various ecosystems.	K2
CO3	Apply knowledge of biodiversity conservation strategies, including in-situ and ex-situ methods, to real-world scenarios.	K3
CO4	Analyze major environmental issues such as pollution, climate change, and habitat destruction, and their impact on ecosystems.	K4
CO5	Evaluate the role of bioremediation techniques in managing environmental pollution and waste disposal.	K4
CO6	Assess the socio-economic and ethical implications of environmental disasters and conservation policies.	K4



MODULE 1:			20 hours	
Scope and introduction to environmental science- environmental studies; Scope and				
-		nmental education. Concept of sustainability	-	
development.				
MODULE 2:			20 Hours	
What is an ecosystem	n? Structur	e: food chains, food webs and function of eco	system:Energy	
flow in an ecosystem	n, nutrient c	cycle and ecological succession. Ecological Ir	nteractions. Case	
studies of the follow:	ing ecosyst	tems: a) Forest ecosystem b) Grassland ecosy	stem c) Desert	
ecosystem d) Aquati	c ecosyster	ns (ponds, streams, lakes, rivers, oceans, estu	aries)	
MODULE 3:			20 Hours	
<b>Biodiversity and Co</b>	onservatio	<b>n</b> Levels of biological diversity: genetic, sp	ecies and ecosystem	
diversity; Biogeogra	diversity; Biogeographic zones of India; Biodiversity patterns and global biodiversity hot spots			
b. India as a mega-bi	iodiversity	nation; Endangered and endemic species of I	ndia c. Threats to	
biodiversity: Habitat loss, poaching of wildlife, man-wildlifeconflicts, biological invasions;				
Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. d. Nature reserves,				
tribal populations and rights (Niyamgiri-Vedanta, POSCO), and human wildlife conflicts in				
Indian context (Sundarban-Human-Tiger encounters). e. Ecosystem and biodiversity services:				
Ecological, economic, social, ethical, aesthetic and Informational value.				
Module 3		20 hours		
environmental challenges and issues: Environmental pollution: types, causes, effects and				
controls; Air, water, soil and noise pollution. b. Climate change, global warming, ozone layer				
depletion, acid rain and impacts on human communities and agriculture c. Nuclear hazards and				
human health risks (Chernobyl, 3 mile Island, Daiichi- Fukushima) d. Solid waste management:				
Control measures of urban and industrial waste, special reference to e-waste, Biomedical				
waste. [sep] e. Pollution Tragedies: Love canal, Bhopal Gas, Endosulfan, Minamata and Flint water				
TOTAL LECTURE	ES		60 Hours	



### W E S T B E N G A L

#### **Department of Biotechnology**

Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem	
Course Title: Developmental Biology lab	Subject Code TIU-UBT-MI-L42302	
Contact Hours/Week: 0-0-4 (L–T–P)	Credit: 2	

#### **Course Objective:**

- 1. To understand early embryonic development by observing and analyzing developmental stages in model organisms such as sea urchins, chicks, and Drosophila melanogaster.
- 2. To explore plant development and tissue culture techniques by studying germination, seedling growth, and induction of plant tissue cultures.
- 3. To develop practical microscopy skills for examining embryonic structures and understanding morphological changes during development.

#### **Course outcomes**

CO Number	Course Outcome	
CO1	Identify and describe key stages of early embryonic development in sea	K1
	urchins and chicks.	
CO2	Explain morphological variations and genetic traits in <i>Drosophila</i>	K2
	<i>melanogaster</i> through observational studies.	
CO3	Demonstrate plant development processes such as germination, seedling	K3
	growth, and tissue culture techniques.	
CO4	Analyze microscopic structures of embryonic development across	K4
	different model organisms.	
CO5	Evaluate the impact of experimental conditions on embryonic and plant	K4
	development.	
CO6	Perform laboratory techniques for embryonic observation, tissue culture,	K3
	and microscopy with accuracy and precision.	

Experiment 1: Observation of Early Embryonic Development in Sea Urchins	TOTAL 60 HOURS
Experiment 2: Chick Embryo Development	
Experiment 3: Morphological Studies on Drosophila Melanogaster	
Experiment 4: Plant Development: Germination and Seedling Growth	
Experiment 5: Induction of Plant Tissue Culture	
Experiment 6: Microscopic Examination of Embryonic Development	



Department of Biotechnology		
Program: B. Sc. in Biotech	Year, Semester: 4 th year, 8t ^h sem	
<b>Course Title:</b> Environmental management and bioremediation lab	Subject Code TIU-UBT-MI-L42303	
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2	

#### **Course Objective:**

**1** To develop an understanding of environmental pollution and contamination assessment techniques through hands-on experiments, including water quality analysis and soil contamination assessment.

2 To explore the role of microorganisms in bioremediation by isolating and identifying microbes from contaminated sites and studying their application in biodegradation and environmental restoration.

3 To evaluate sustainable environmental management strategies such as phytoremediation and bioremediation techniques, emphasizing their effectiveness in mitigating pollution.

#### **Course outcomes**

CO Number	Course Outcome	
CO1	Identify key water quality parameters and their significance in environmental monitoring.	K1
CO2	Explain methods for assessing soil contamination and its environmental impact.	K2
CO3	Demonstrate microbial isolation techniques from contaminated sites and analyze microbial diversity.	K3
CO4	Analyze the process of biodegradation and its role in breaking down hydrocarbons.	K4
CO5	Evaluate phytoremediation as a strategy for removing pollutants from soil and water.	K4
CO6	Perform and compare different bioremediation techniques for environmental restoration.	K3

Experiment 1: Analysis of Water Quality Parameters	TOTAL 60
Experiment 2: Soil Contamination Assessment	HOURS
Experiment 3: Microbial Isolation from Contaminated Sites	
Experiment 4: Biodegradation of Hydrocarbons	
Experiment 5: Phytoremediation Experiment	
Experiment 6: Assessment of Bioremediation Techniques	