

CURRICULUM AND SYLLABUS For

B. TECH

IN

MECHANICAL ENGINEERING AY-2024-25

DEPARTMENT OF MECHANICAL ENGINEERING

CURRICULUM

S. No.	Code	Course Title	L	Т	Р	С
1	TIU-ES-UCS-T11101	INTRODUCTION TO PROGRAMMING	3	0	0	3
2	TIU-BS-UMA-T11101	MATHEMATICS I	3	1	0	4
3	TIU-BS-UCH-T11101	CHEMISTRY	3	1	0	4
4	TIU-ES-UCS-L11191	BASIC COMPUTING LAB	0	0	2	1
5	TIU-ES-UCS-L11101	INTRODUCTION TO PROGRAMMING LABORATORY	0	0	3	1.5
6	TIU-BS-UCH-L11101	CHEMISTRY LAB	0	0	3	1.5
7	TIU-ES-UME-L11192/ TIU-ES-UME-L12192	WORKSHOP PRACTICE	0	0	3	1.5
8	TIU-HSM-UEN-S11191	CAREER ADVANCEMENT & SKILL DEVELOPMENT – I COMMUNICATION SKILL	2	0	0	2
9	TIU-HSM-UES-S11191	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
		Total				19.5

S. No.	Code	Course Title	L	Т	Р	С
1	TIU-ES-UEE-T12101	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	4	0	0	4
2	TIU-ES-UCS-T12101	PROBLEM SOLVING USING DATA STRUCTURE	3	0	0	3
3	TIU-BS-UMA-T12101B	MATHEMATICS II B	4	0	0	4
4	TIU-BS-UPH-T12101	PHYSICS	4	0	0	4
5	TIU-ES-UME-T11101/ TIU-ES-UME-T12101	ENGINEERING MECHANICS	3	0	0	3
6	TIU-ES-UCS-L12101	PROBLEM SOLVING USING DATA STRUCTURES LAB	0	0	3	1.5
7	TIU-ES-UEE-L12101	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB AND SIMULATION	0	0	3	1.5
8	TIU-ES-UME-L11191/ TIU-ES-UME-L12191	ENGINEERING DRAWING AND GRAPHICS	0	0	3	1.5
9	TIU-BS-UPH-L12101	PHYSICS LAB	0	0	3	1.5
10	TIU-HSM-UEN-S12191	CAREER ADVANCEMENT & SKILL DEVELOPMENT – II COMMUNICATION SKILL	0	0	2	1
11	TIU-HSM-UES-S12191	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
		Total				26

S. No.	Code	Subject Name	L	Т	Р	С
1	TIU-UME-T211	FLUID MECHANICS	3	1	0	4
2	TIU-UME-T213	THERMODYNAMICS	3	1	0	4
3	TIU-UME-T215	STRENGTH OF MATERIALS	3	1	0	4
4	TIU-UME-T217	MATERIAL SCIENCE	3	0	0	3
5	TIU-UMA-T205	TRANSFORM CALCULUS	3	0	0	3
6	TIU-UMB-T201	ENVIRONMENTAL SCIENCE	2	0	0	2
7	TIU-UME-L211	FLUID MECHANICS LAB	0	0	3	1.5
8	TIU-UME-L213	ADVANCED MANUFACTURING PROCESSES LAB	0	0	3	1.5
9	TIU-UEN-S297/ TIU-UME- S297A	CAREER ADVANCEMENT & SKILL DEVELOPMENT (FRENCH)/INTRODUCTION TO PYTHON	0	0	2	1
10	TIU-UES-S299	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
		Total				25

S. No	Code	Subject Name	L	Т	Р	С
1	TIU-UME-T212	THEORY OF MACHINES	3	0	0	3
2	TIU-UME-T216	FLUID MACHINES	3	0	0	3
3	TIU-UME-T218	MANUFACTURING PROCESSES	3	1	0	4
4	TIU-UMA-T202	PROBABILITY & STATISTICS	3	0	0	3
5	TIU-UMA-T204	NUMERICAL ANALYSIS	3	0	0	3
6	TIU-UME-L200	MECHANICS OF MATERIALS LABORATORY	0	0	3	1.5
7	TIU-UME-S200	MACHINE DRAWING	0	0	3	1.5
8	TIU-UME-L216	FLUID MACHINES LAB	0	0	3	1.5
9	TIU-CASD-UEN-S298A/ TIU-CASD-UME-S298A	CAREER ADVANCEMENT AND SKILL DEVELOPMENT (FRENCH)/PROBLEM SOLVING WITH ADVANCE EXCEL AND POWER BI	0	0	2	1
10	TIU-UES-S298	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
Total						

S. No.	Code	Subject Name	L	Т	Р	С
1	TIU-UME-T301	HEAT TRANSFER	3	1	0	4
2	TIU-UME-T311	DESIGN OF MACHINE ELEMENTS I	3	1	0	4
3	TIU-UME-T313	DYNAMICS OF MACHINERY	3	0	0	3
4	TIU-UME-T315	CONVENTIONAL AND NON-CONVENTIONAL MACHINING TECHNOLOGY	3	1	0	4
5	TIU-UME-T317	REFRIGERATION AND AIR CONDITIONING SYSTEMS	3	0	0	3
6	TIU-UME-L307	HEAT TRANSFER LAB	0	0	3	1.5
7	TIU-UME-L309	FLUID MACHINERY LAB	0	0	3	1.5
8	TIU-UME-L311	AUTOCAD LAB	0	0	3	1.5
9	TIU-UTR-S301	CAREER ADVANCEMENT & SKILL DEVELOPMENT (SAP ERP)	3	0	0	3
10	TIU-UES-S381	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
Tota	1					26.5

S. No.	Code	Subject Name	L	Т	Р	C
1	TIU-UME-T328	THERMAL SYSTEMS	3	1	0	4
2	TIU-UME-T320	DESIGN OF MACHINE ELEMENTS II	3	1	0	4
3	TIU-UME-T330	ROBOTICS AND AUTOMATION	3	0	0	3
4	TIU-UME-T324	METROLOGY AND MECHANICAL MEASUREMENT	3	1	0	4
5	TIU-UME-T326	METAL CUTTING AND CNC MACHINES	3	0	0	3
6		PROFESSIONAL ELECTIVE I	3	0	0	3
7	TIU-UME-L324	METROLOGY AND MECHANICAL MEASUREMENT LAB	0	0	3	1.5
8	TIU-UME-L310	MODELLING AND SIMULATION USING SOLIDWORKS	0	0	3	1.5
9	TIU-CASD-UTR-S302A/ TIU-CASD-UME-S302A	CAREER ADVANCEMENT & SKILL DEVELOPMENT (SAP ERP)/PROBLEM SOLVING TECHNIQUES WITH PYTHON	0	0	2	1
10	TIU-UES-S382	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	0	2	1
Tota	1					26

S. No.	Code	Subject Name	L	Т	Р	C
1	TIU-UME-T413	OPERATIONS RESEARCH AND INDUSTRIAL MANAGEMENT	3	1	0	4
2	TIU-UME-T415	MECHATRONICS AND INDUSTRIAL CONTROL	3	1	0	4
3	TIU-UME-T419	BASICS OF STEAM POWER PLANT	3	0	0	3
4		Elective I	3	0	0	3
5	TIU-UME-L403	INDUSTRIAL TRAINING	0	0	0	1.5
6	TIU-UME-P403	B. TECH PROJECT I	0	0	3	1.5
7	TIU-UME-S409	CAREER ADVANCEMENT & SKILL DEVELOPMENT	2	0	0	2
8	TIU-UES-S499	ENTREPRENEURSHIP SKILL DEVELOPMENT	0	2	0	2
		Total				21

S. No.	Code	Subject Name	L	Т	Р	С
1		Elective II	3	0	0	3
2		Elective III	3	0	0	3
3	TIU-UME-P404	B. Tech Project II	0	0	6	3
4	TIU-UME-S496	Grand Viva Voce	0	0	0	1.5
5	TIU-UME-S402	Career Advancement and Skill Development	2	0	0	2
6	TIU-UES-S498	Entrepreneurship Skill Development	0	2	0	2
Total						14. 5

ELECTIVES

S. No.	Code	Subject Name	L	Т	Р	С	
		Elective I					
1	TIU-UME-E417	Computer Aided Manufacturing	3	0	0	3	
2	TIU-UME-E419	Gas Dynamics	3	0	0	3	
3	TIU-UME-E421	Engineering Fracture Mechanics	3	0	0	3	
Elective II							
1	TIU-UME-E410	Renewable Energy Sources	3	0	0	3	
2	TIU-UME-E414	Computational Fluid Dynamics	3	0	0	3	
3	TIU-UME-E416	Mechanics Of Composite Materials	3	0	0	3	
		Elective III					
1	TIU-UME-E412	Additive Manufacturing	3	0	0	3	
2	TIU-UME-E418	Pollution Control and Management	3	0	0	3	
3	TIU-UME-E420	Supply Chain Management	3	0	0	3	

DETAIL SYLLABUS

W E S T B E N G A L Department of Computer Science and Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.
Course Title: Introduction to Programming	Subject Code: TIU-ES-UCS-T11101
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. develop algorithmic problem-solving skills and implement them in C programs.
- 2. apply modular programming, recursion, and data structures to create interactive C programs.
- 3. utilize advanced C concepts like structures, pointers, and linked lists for efficient programming.

COURSE OUTCOME :

The student will be able to:

C01	Analyze algorithmic solutions to problems.	K4
CO2	Construct algorithms using C programming.	КЗ
CO3	Apply interactive input/output, arithmetic expressions, repetitions, decision- making, and arrays in programs.	К3
C04	Organize modular C programs using functions, including recursion.	КЗ
CO5	Categorize programs using structures, unions, pointers, and linked lists.	K4
C06	Utilize file input and output operations in programs.	K3

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO C LANGUAGE	4 Hours				
Character set,	Character set, Variables and Identifiers, Built-in Data Types, Variable Definition, Arithmet					
operators and	l Expressions, Constants and Literals, Simple assignment stat	ement, Basic				
input/output s	tatement, Simple 'C' programs.					
MODULE 2:	CONDITIONAL STATEMENTS AND LOOPS	6 Hours				
Decision maki	ng within a program Conditions, Relational Operators, Logical C	onnectives, if				
statement, if-e	lse statement. Loops: while loop, do while, for loop, Nested loops,	Infinite loops,				
switch stateme	nt, Structured Programming.					
MODULE 3:	ARRAYS	6 Hours				
One dimension	al arrays: Array manipulation, Searching, Insertion, and Deletion of an	element from				
an array, findi	ng the largest / smallest element in an array; Two dimensional arra	ays, Addition/				
multiplication	of two matrices transpose of a square matrix, Null terminated strin	gs as array of				
characters, Rep	presentation sparse matrice.					
MODULE 4:	FUNCTIONS	7 Hours				
Top-down app	roach of problem solving; Modular programming and functions; Stand	ard Library of				
C functions; P	rototype of a function Formal parameter list, Return Type, Functi	on call, Block				
structure; Pass	ing arguments to a Function Call by reference, Call by value, Recurs	ive Functions,				
Arrays as function arguments.						
MODULE 5:	STRUCTURES AND UNIONS	5 Hours				
Structure variables, Initialization, Structure assignment, Nested structure, Structures and						
Functions, Structures and arrays: Arrays of structures, Structures containing arrays, Unions.						

MODULE 6:	POINTERS 9 Hours								
Address operators, Pointers type declaration, Pointer assignment, Pointer initialization, Pointer									
arithmetic, Functions and pointers, Arrays and Pointers, Pointer arrays.									
MODULE 7:	SELF-REFERENTIAL STRUCTURES AND LINKED LISTS	3 Hours							
Creation of a	Creation of a singly connected linked list, traversing a linked list, Insertion into a linked list,								
Deletion from a	a linked list.								
MODULE 8:	FILE PROCESSING	5 Hours							
Concept of Files, File opening in various modes and closing of a file, Reading from a file, writing									
onto a file.									
TOTAL LECTURES									

Books:

- 1. B W Kernighan and D.M. Ritchie, The C Programming Language, Prentice Hall of India.
- 2. K. Venugopal and Sudeep R Prasad, Programming with C, McGraw Hill
- 3. R G Dromey, How to solve it by Computer, Prentice Hall in India.
- 4. Jones, Robin and Stewart, The Art of C Programming, Narosa Publishing House
- 5. A Kenneth, C Problem solving and Programming, Prentice Hall International.
- 6. H.Scheldt, C: The Complete Reference, 4th Edition, McGraw Hill

	PROGRAM OUTCOMES (PO)													AM SPI OMES (ECIFIC PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	-	2	I	-	-	-	I	-	-	1	2	-	-
CO2	2	3	2	-	3	-	-	-	I	-	-	1	3	-	-
CO3	2	2	-	-	3	-	-	-	-	-	-	1	2	-	-
CO4	2	-	2	-	3	-	-	-	-	-	-	1	2	-	-
C05	3	2	-	-	3	-	-	-	-	-	-	-	3	-	-
C06	1	-	-	-	2	-	-	-	-	-	-	1	2	-	-

G

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Mathematics

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.				
Course Title: MATHEMATICS I	Subject Code: TIU-BS-UMA-T11101				
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4				

COURSE OBJECTIVE:

Enable the student to:

- 1. Analyze and describe the behavior of functions of single and multiple variables, understand sequences and series.
- 2. Solve systems of linear equations, evaluate eigenvalues and eigenvectors of square matrices.
- 3. Analyzing differential equations and finding their solutions.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Analyze the behavior and the nature of the curve with calculus of one variable.	K4
CO2	Develop a basic understanding of functions of several variables and their properties.	K4
CO3	Investigate the solutions of system of linear equations using Determinants and Matrices.	K4
CO4	Evaluate Eigen value and vectors of square matrices.	K4
C05	Examine the nature (viz., convergence, divergence) of sequence and series.	K4
C06	Analyze differential equations and investigate solutions.	K4

COURSE CONTENT:

MODULE 1:	Differential Calculus	12 Hours						
Differential Calculus (Functions of one variable): Rolle's theorem (statement only), Cauchy's mean								
value theorem (Lagrange's mean value theorem as a special case), Taylor's and Maclaurin's								
theorems with remainders, indeterminate forms, concavity and convexity of a								
curve, points of inflexion, asymptotes and curvature.								

Differential Calculus (Functions of several variables): Limit, continuity and differentiability of functions of several variables, partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, derivatives of higher order and their commutatively, Euler's theorem on homogeneous functions, harmonic functions, Taylor's

expansion of functions of several variables, maxima and minima of functions of several variables -Lagrange's method of multipliers. MODULE 2: **Ordinary Differential Equations 10 Hours** Ordinary Differential Equations: Formation of differential equations, First order differential equations - exact, linear and Bernoulli s form, second order differential equations with constant coefficients, method of variation of parameters, general linear differential equations with constant coefficients, Euler's equations, system of differential equations. MODULE 3: 8 Hours **Sequences and Series** Sequences and Series: Sequences and their limits, convergence of series, comparison test, Ratio test, Root test, Absolute and conditional convergence, alternating series, Power series. MODULE 4: **15 Hours Matrix and Determinant** Matrix and Determinant: Revision of matrix and determinant, rank and nullity, solutions of

system of linear equations using Determinants and Matrices; Eigenvalues and eigen vectors, Cayley-Hamilton Theorem, transformation of matrices, adjoint of an operator, normal, unitary, hermitian and skew-hermitian operators, quadratic forms. TOTAL LECTURES 45 Hours

Books:

- 1. Higher Engineering Mathematics, B. S. Grewal
- 2. Advanced Engineering Mathematics, Kreyszig
- 3. A TextBook of Engineering Mathematics, Rajesh Pandey
- 4. Engineering Mathematics, B. K. Pal, K. Das

				PR	PROGR OUTC	AM SPI OMES (ECIFIC PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	2	-	-	-	-	-	-	-	1	2	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	1	2	-	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-	2	1	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	2	1	-
C05	3	2	-	-	-	-	-	-	-	-	-	1	-	-	-
C06	2	3	-	2	-	-	-	-	-	-	-	1	2	1	-

W E S T B E N G A L

Department of Chemistry

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.
Course Title: Chemistry	Subject Code: TIU-BS-UCH-T11101
Contact Hours/Week: 3-1-0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- Impart the basic concept of thermodynamics, chemical kinetics, ionic Equilibria, electrochemistry, stereochemistry, reaction mechanism and chemical bonding and apply the concept in the relevant engineering field of studies.
- Understanding the thermodynamic concept helps in acquiring information regarding the feasibility of any processes.
- Acquire the knowledge of batteries and fuel cell by understanding the basic concepts of electrochemistry.
- Acquire the knowledge of stereochemistry and reaction mechanism helps in understanding the glimpse of the organic reaction pathways.
- Impart the knowledge of various types of bonding, energy distributions in atomic and molecular orbital makes the student easier to understand the technology based on them.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Understand the concept of chemistry (thermodynamics, chemical kinetics, ionic equilibria, electrochemistry, chemical bonding and isomerism along with reaction mechanism) and applying the same in their engineering branch of studies with a special emphasis to environment, public health and safety.	K2
C02	Apply the concept of chemistry to undertake the interdisciplinary research involving the relevant engineering field of studies.	K3
CO3	Analyze the purity of procured chemical compounds based on the acquired knowledge of chemistry related to its physical and chemical properties, which shall in turn used as a starting material for industrial application.	K4
CO4	Analyze the knowledge of electrochemistry for better understanding problems related to the mechanism of energy production using electrochemical systems.	K4
	Remember the principles of chemical bonding to assess different types of molecular	

CO5	interactions present in varieties of materials and justifying the choice of materials for	K1
	industrial applications for an engineering solution.	
CO-6:	Understand the basic concept of organic reaction mechanism and interpreting this concept in the practical field of industrial applications.	К2

COURSE CONTENT:

MODULE 1:	THERMODYNAMICS	10 Hours								
First law of therm	First law of thermodynamics-system, process, Internal Energy, Enthalpy, Concept of reversible and									
irreversible process, mathematical form of reversible work and irreversible work, Adiabatic reversible										
expansion, work done in isothermal and adiabatic process, Specific heat capacity, concept of molar specific										
heat at constant pressure (C_p), molar heat capacity at constant volume (C_v), Relationship between C_P and										
C _v , Second law of t	C _v , Second law of thermodynamics-Carnot cycle, calculating efficiency of machines, entropy, free energy,									
Gibbs-Helmholtz equation, concept of spontaneous and non-spontaneous process, Maxwell relation,										
chemical equilibriu	m.									
MODULE 2:	CHEMICAL KINETICS	6 Hours								
Rate of reactions, fa	actors affecting the rate of reaction, Rate laws, order and molecularity o	of a reaction, half								
life period, mechan	ism of elementary and overall reaction, reversible, consecutive, and p	arallel reactions,								
steady state appro	ximation, variation of rate constant with temperature, Arrhenius ec	juation, collision								
theory, concept of e	nergy barrier, threshold energy, activation energy									
MODULE 3:		12 Hours								
А.	ACID-BASE EQUILIBRIA	5 Hours								
Strength of acids a	nd bases based on their dissociation constant, Brönsted-Lowry and I	Lewis concept of								
acids and bases, Io	onic product of water, pH of solutions and pH indicators, Commor	ı ion effect, Salt								
hydrolysis, Buffer s	olutions, Henderson's equation, Solubility product and its applications.									
В.	ELECTROCHEMICAL SYSTEM	7 Hours								
Redox reactions, c	onductance in electrolytic solutions, specific and molar conductivi	ty, variations of								
conductivity with c	oncentration, Kohlrausch's Law, electrolysis and law of electrolysis, O	stwald's dilution								
law, Electrochemic	al cells, electrolytic cells, EMF of a cell, Application of EMF measure	ments, standard								
electrode potential,	, Nernst equation and its application to chemical cells, Relation betwe	en Gibbs energy								
change and EMF of	a cell, fuel cells.									
MODULE 4:	CHEMICAL BONDING	8 Hours								
Concept of ionic bo	onding, ionization enthalpy, lattice energy and electro negativity and	periodic trends.								
Covalent bond, sign	na and pi bonds: the examples of formation of ammonia, nitrogen, eth	ene, ethyne, and								
carbon dioxide, Res	onance, Co-ordinate or dative covalent bond: the examples of formatic	on of oxy-acids of								
chlorine, Hydrogen	bonding. Valence Shell Electron Pair Repulsion Theory, Hybridizatic	on and shapes of								
molecules, d- orbita	al splitting in crystal field (Oh, Td), Molecular orbital theory: Qualitat	tive treatment of								
homo-nuclear diate	omic molecules of first two periods, Energy level diagrams, bonding	, anti bonding								
molecular orbital's,	bond order, paramagnetism of O ₂ molecule.									
MODULE 5:										
А.	ISOMERISM AND CHIRALITY	3 Hours								
Definition and Cla	ssification of isomerism – Structural Isomerism, Stereo Isomeris	sm – Geometric								
isomerism (Cis and	Trans only), Optical isomerism, CIP rules, R,S-Configuration									
В.	REACTION MECHANISM	5 Hours								
Concept of Substitu	tion, addition and elimination reactions, concept of homolytic and het	erolytic fission,								
concept of electro	concept of electrophiles and nucleophiles. Inductive, mesomeric, electrometric effects, and hyper-									
conjugation, leaving group, reaction media, stereo chemical implications, free radicals and polar										
mechanisms, Nucleophilic substitution at the saturated carbon atom- S $^{1}\!$, S $^{2}\!$, and S $^{i}\!$, mechanism,										

elimination reaction-E1, E2, and E₁CB mechanisms.

TOTAL LECTURES

BOOKS:

- 1. S. Glasstone, Text Book of Physical Chemistry, Macmillan India Limited.
- 2. S. Pahari, Physical Chemistry, New Central Book Agency.
- 3. P. W. Atkins, Physical Chemistry, 6th Edition, Oxford Publishers.
 - I. L. Finar, Organic Chemistry, Addison Wesley Longman, Inc.
- 4. Mark Loudon, Organic Chemistry, 4th Edition, Oxford Publishers.
- 5. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai, Publishing Company, 16th Edition, 2017

44 Hours

6. Fundamental concept of Inorganic chemistry, volume 3, 2nd edition, by Asim Kumar Das, CBS publishers and distributors Pvt. Ltd.

				PR	OGF	PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	2	2	-	-	I	-	-	2	-	-
CO2	2	3	-	2	-	I	-	-	-	I	-	1	3	2	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	3	-
CO4	2	2	-	2	-	-	1	-	-	-	-	-	2	3	-
CO5	3	-	-	-	-	-	1	-	-	-	-	-	2	-	1
C06	2	2	-	-	-	-	-	-	-	-	-	-	2	2	1

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Computer Science & Engineering

Program: B.Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.				
Course Title: Basic Computing Lab	Subject Code: TIU-ES-UCS-L11191				
Contact Hours/Week: 0-0-2	Credit: 1				

COURSE OBJECTIVE :

Enable the student to:

- 1. To introduce students to the UNIX/Linux environment and familiarize them with fundamental system operations, commands, and file management techniques.
- 2. To develop proficiency in shell scripting and command-line utilities for automating tasks, managing processes, and handling files efficiently.
- 3. To provide hands-on experience with GitHub operations and debugging techniques while enhancing students' ability to work with text processing tools, redirection, and file compression in a UNIX/Linux environment.

COURSE OUTCOME :

The student will be able to:

C01	Be Familiar with the UNIX/Linux operating system	K2
C02	Develop proficiency in using shell commands and writing basic shell scripts.	К3
CO3	Understand file systems, process management, and user permissions.	K2
CO4	Understand basic github operations and debugging of programs	К3
CO5	Apply fundamental text processing tools and commands such as grep, find, and text editors (vi/nano) for efficient file manipulation and searching.	K4
C06	Utilize redirection, piping, and file compression techniques to manage data effectively in a UNIX/Linux environment.	K4

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO UNIX/LINUX AND BASIC COMMANDS	9 Hours
Overview of UN	IIX/Linux operating systems, Logging into UNIX/Linux systems,	
Basic system co	ommands: ls, cd, pwd, cp, mv, rm, clear, man, who, date, cal, etc.	
Understanding	the file system hierarchy: /, /home, /bin, /usr, /var, etc.	
MODULE 2	FILE AND PROCESS MANAGEMENT	9 Hours

File and Directory Management: Creating, removing, and organizing files and directories, Commands: mkdir, rmdir, touch, chmod, chown, rm, find, etc. Understanding file permissions and ownership (rwx permissions, chmod command) Process Management: Viewing active processes (ps, top, htop), Controlling processes: kill, bg, fg, jobs, nice, and renice, Understanding process states: running, sleeping, zombie

MODULE 3: TEXT PROCESSING AND BASIC SHELL SCRIPTING

9 Hours

9 Hours

9 Hours

Text Editors (vi, nano): Creating, editing, saving, and existing files, Working with commands like grep. more. less. sed. and awk cat. Basic Shell Scripting: Writing simple shell scripts (bash), Understanding variables, loops (for, while), and conditional statements (if, elif, else), Creating automation scripts for file operations and system monitoring

REDIRECTION, PIPING, AND FILE COMPRESSION MODULE 4:

Redirection and Piping: Input/output redirection (>, >>, <) Piping () for command chaining File Compression and Archiving: Working with gzip, tar, zip, unzip, Creating and extracting archives for data backup

MODULE 5: **GITHUB BASICS AND DEBUGGING TECHNIQUES**

Using GitHub for Version Control: Setting up a GitHub repository, Basic commands: git init, git add, commit, git push, git pull, git clone,Checking in and checking git out files Debugging Techniques: Identifying and resolving errors in shell scripts, Using debugging tools (echo, set -x, gdb for C programs) 45 Hours

TOTAL LAB HOURS

Books:

- 1. "UNIX and Linux System Administration Handbook" Evi Nemeth, Garth Snyder, Trent R. Hein, Ben Whaley, and Dan Mackin
- 2. "The Linux Command Line: A Complete Introduction" William E. Shotts Jr.
- 3. "Learning the bash Shell"– Cameron Newham.

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	1	-	-	-	-	-	-	1	-	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	1	-	-	-
CO3	3	2	-	-	2	-	-	-	-	-	-	-	2	-	-
CO4	2	-	3	-	3	-	-	-	-	-	-	1	3	-	-
C05	2	2	-	-	3	-	-	-	-	-	-	1	3	-	2
C06	1	-	-	-	3	-	-	-	-	-	-	2	2	-	-

W E S T B E N G A L

Department of Computer Science & Engineering

Program: B.Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.
Course Title: Introduction to Programming Laboratory	Subject Code: TIU-ES-UCS-L11101
Contact Hours/Week : 0–0–3	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

- 1. Introduce students to the fundamentals of C programming, including syntax, data types, operators, and control structures, enabling them to write and execute basic programs.
- 2. Develop students' ability to analyze problems, apply algorithmic thinking, and implement solutions using decision-making constructs, loops, functions, and data structures.
- 3. Equip students with hands-on experience in using arrays, strings, pointers, structures, and unions, enabling them to develop efficient programs for mathematical computations, data processing, and real-world applications.

COURSE OUTCOME :

C01	Demonstrate the ability to write, compile, and execute simple C programs using basic input-output functions, arithmetic operations, and control statements.	K2
CO2	Apply conditional statements (if-else, ternary operator, switch-case) and looping constructs (for, while, do-while) to solve mathematical and logical problems.	К3
CO3	Solve mathematical problems such as factorial, permutations & combinations, series summation, and trigonometric computations using C programming.	К3
CO4	Develop programs using arrays and strings to perform operations such as searching, sorting, frequency analysis, and string transformations.	K4
C05	Utilize pointers, structures, and unions in C to perform complex operations such as matrix manipulations, complex number arithmetic, and data organization.	K4
C06	Implement user-defined functions and demonstrate the ability to use memory management functions, pointers, and structures for efficient data handling.	K4

COURSE CONTENT :

MODULE 1:	Introduction to C Programming & Basic Operations	6 Hours					
Writing and ex	Writing and executing a basic C program (Hello World). Understanding Input/Output functions						
(printf(), scanf()). Variables, Data Types, and Memory Allocation. Arithmetic operations and simple							
mathematical computations							
MODULE 2:	Control Structures & Decision Making	6 Hours					
Conditional sta	tements (if-else, ternary operator, switch-case). Looping constructs (for, while, do-					
while).							
Nested control	structures.						
MODULE 3:	Functions, Recursion & Pattern Printing	6 Hours					
Defining and ca	lling user-defined functions. Function parameters, return types, and re	cursion.					
Printing patter	ms using loops ($*$, numbers, alternating 0/1). Mathematical compu	tations using					
recursion (Fact	corial, nCr).						
MODULE 4:	Arrays & Strings	9 Hours					
One-dimension	al and two-dimensional arrays. Searching & sorting algorithms. Stri	ng operations					
(length, freque	ncy analysis, conversion to uppercase/lowercase).						
MODULE 5:	Pointers, Structures & Memory Management	9 Hours					
Pointer concep	ts and memory addresses. Pointer arithmetic and array manipulation $\mathfrak v$	ising pointers.					
Structures and	Unions for data organization. Dynamic memory allocation concepts.						
MODULE 6:	Advanced Programming & Applications	9 Hours					
Matrix operation	ons (Addition, Multiplication). Trigonometric function computations (s	sin, cos values					
at intervals). File handling concepts (basic read/write operations).							
TOTAL LAB H	DURS	45 Hours					

Books:

- 1. B W Kernighan and D.M. Ritchie, The C Programming Language, Prentice Hall of India.
- 2. K. Venugopal and Sudeep R Prasad, Programming with C, McGraw Hill
- 3. R G Dromey, How to solve it by Computer, Prentice Hall in India.

		PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	2	1	-	3	-	I	1	I	I	-	1	2	-	-	
CO2	2	3	1	-	2	-	I	1	I	•	-	1	3	-	-	
CO3	3	2	1	-	3	-	I	1	I	I	-	I	2	-	-	
CO4	2	1	3	1	3	1	-	1	-	-	-	1	2	-	-	
C05	3	2	-	-	3	-	-	-	-	-	-	1	3	-	2	
C06	2	-	2	-	3	-	-	-	-	-	-	2	3	-	-	

Department of Chemistry

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 1st Sem.
Course Title: Chemistry Lab	Subject Code: TIU-BS-UCH-L11101
Contact Hours/Week: 0-0-3 (L–T–P)	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

1.	Understand the safety procedures and follow the protocol while handling chemicals and
	reagents
2.	Remember the best practices of chemistry lab
3.	Understand to prepare standard operating procedure for each experiment performed
4.	Understand the basic analytical techniques, such as preparation of solutions of desired strength, standardization of solutions and analysis of concentration of the species (chemicals, metal ions, active ingredients etc.) present in unknown samples using titration and volumetric method.
5.	Analyze the result obtained after performing the experiment
6.	Identify the chemicals in terms of hazardous and non-hazardous nature and also in terms of purity

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Remember the safety protocols and best practices inside a chemistry lab, nature of	
	various types of reagents, handling, and storage.	K1
CO2	Understand the basic principle in estimating the pH of solution either by pH meter or	
	conductometric analysis or Potentiometric analysis as well as the basic analytical techniques, such as preparation of solutions of desired strength, standardization of	K2

	solutions and analysis of concentration of the species (chemicals, metal ions, active ingredients etc.) present in unknown samples.	
CO3	Apply the concept of titration in knowing the concentration of unknown acid	К3
CO4	Evaluate the functional groups present in organic molecules by simple reactions.	K5
CO5	Understand the basics of analyzing various types of organic compounds and their properties	K2
C06	Evaluate the hardness of water by performing the complexometric titration and assess the solubility of different solutes in varied solvents.	K5

COURSE CONTENT:

Experiment	Торіс	Contact Hours
Experiment-1:	Acid-base titration involving normality and Molarity as a parameter of standards of solution.	3 Hours
Experiment-2:	Determination of the total hardness of water	3 Hours
Experiment-3:	Determination of the relative viscosity of glycerol solution by Ostwald viscometer.	3 Hours
Experiment-4:	Determination of the relative surface tension of glycerol solution by Stalagmometer	3 hours
Experiment-5:	pH metric and Potentiometric titration	3 hours
Experiment-6:	Qualitative analysis- identification of the following in a given salt: Cations : NH ⁴⁺ , Pb ²⁺ , Cu ²⁺ , Al ³⁺ , Fe ²⁺ , Fe ³⁺ , Zn ²⁺ , Ca ²⁺ , and Mg ²⁺	6 hours
Experiment-7:	Qualitative analysis- identification of the following in a given salt:Anions: CO_3^{2-} , NO_2^{-} , SO_3^{2-} , SO_4^{2-} , NO_3^{-} etc.	6 hours
Experiment-8:	Identification of the following compounds and functional groups based on observations: Aliphatic compounds: formaldehyde; ethanol; acetic acid; acetone; glucose etc.	6 hours
Experiment-9:	Identification of the following compounds and functional groups based on observations: Aromatic compounds: benzoic acid; phenol; aniline; benzaldehyde etc.	6 hours
Experiment-10:	Determination of the rate kinetic constant value of ester hydrolysis	3 hours
Experiment-11:	Separation of mixtures of organic compounds utilizing the concept of boiling point/melting point/solubility	3 hours
	Total	45 hours

BOOKS:

1. Hands on chemistry laboratory manual by Paradis & Jeffrey, McGraw-Hill publication

2. Experiments in physical chemistry by Garland and Crawl, McGraw-Hill publication

				PR	OGF	PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	2	-	2	-	-	-	1	2	-	-
CO2	3	2	-	2	2	-	-	-	-	-	-	1	2	3	-
CO3	2	3	-	-	2	-	-	-	-	-	-	-	2	3	-
CO4	2	2	-	2	-	-	-	-	-	-	-	-	2	3	-
CO5	2	-	-	-	-	-	-	-	-	-	-	-	2	2	-
C06	3	2	-	2	-	-	-	-	-	-	-	1	3	3	-

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester:1st Yr., 1st Sem.				
Course Title: Workshop Practice	Subject Code: TIU-ES-UME-L11192				
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5				

Course Objective:

Enable the students to

- Understand workshop safety and gain knowledge on different materials
- Develop proficiency in using carpentry and fitting shop
- Learn about sheet metal and welding techniques
- Understand the working principles and applications of conventional machines

Course Outcome:

C01	Demonstrate knowledge of workshop safety and materials used in manufacturing processes.	K1
CO2	Explain the use of carpentry, fitting, and sheet metal tools, and perform basic operations.	K2
CO3	Apply various fitting and machining operations such as measuring, marking, drilling, and tapping.	К3
CO4	Analyze different welding techniques (gas, arc, soldering, brazing) and their applications.	K4
C05	Evaluate the working principles of conventional machines like lathe, shaper, drilling, grinding, and milling.	K6
C06	Create joints and structures using woodworking, sheet metal, and welding techniques.	K5

Laboratory Content:

Module-1	Carpentry Shop:	6 hours
	General safety precautions in workshop and introduction. Types of India engineering purposes; Application of timber as per their classification tools and machines; Different types of carpentry joints; Different	an wood used for Carpentry hand t wooden joint
	preparation.	

Module-2	Fitting Shop:	6 hours
	Introduction to fitter's tools, gauges, measuring instruments etc.; involving the following operations: measuring and marking, filing, drilling	Job preparation ng, and tapping.
Module-3	Sheet metal shop:	3 hours
	Introduction, metals used in sheet metal work, hand tools, Sheet metal jo	oints; Soldering.
Module-4	Welding Shop:	3 hours
	Introduction to gas and arc welding; Soldering and brazing etc.; Welding welding materials.	g equipment and
Module-5	Machine Shop:	6 hours
	Demonstration and working principles of some conventional mach shaper, drilling, grinding, milling machines; General idea of cutting tools	ines, like lathe, of the machines.

TOTAL PRACTICALS

24 hours

Recommended Books:

- 1. S. K. Hajra Choudhury, A. K. Hajra Choudhury, Nirjhar Roy, **Elements of Workshop Technology** (Vol. I & II)
- 2. H S Bawa. *Workshop Practice,* McGraw Hill Education; 2nd edition, 2/e
- 3. Kannaiah, P. and K.L. Narayana (2009), Workshop Manual, Scitech Publishers
- 4. Begeman, M. L. and Amstead, B. H., **Manufacturing Process**, 8th Ed., 1987, Wiley

				PR	OGI	RAM	10	PROG OUT	RAM SPEC COMES (P	CIFIC SO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	-	-	-	-	2	-	2	-	-	-	1	2	-	-
CO2	2	-	-	-	2	-	-	-	-	-	-	-	2	2	-
CO3	2	2	-	-	2	-	-	-	-	-	-	-	3	3	-
C04	2	3	-	-	-	-	-	-	-	-	-	-	2	3	-
C05	3	2	-	-	-	-	-	-	-	-	-	1	3	2	-
C06	2	2	3	-	2	-	-	-	-	-	-	-	3	3	3

WESTBENGAL

Department of English

Program: B. Tech in Mechanical Engineering	Year, Semester:1st Year, 1st Sem
Course Title: Career Advancement & Skill Development-I Communication Skill	Subject Code: TIU-HSM-UEN-S11191
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop English proficiency for clear, precise, and confident workplace communication.
- 2. Enhance practical skills in vocabulary, grammar, pronunciation, speaking, and writing.
- 3. Apply communication theories to improve professional and interpersonal interactions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain fundamental communication principles and their relevance in workplace interactions.	K2
CO2	Apply grammar and language skills to construct precise and coherent spoken and written communication.	К3
CO3	Demonstrate fluency in spoken English through pronunciation drills, vocabulary building, and interactive conversations.	K4
CO4	Construct well-organized sentences, paragraphs, and linked paragraphs to enhance professional writing	K3
CO5	Develop and revise written communication by employing strategies for drafting, editing, and proofreading.	K3
C06	Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.	K4

MODULE 1:	INTRODUCTION TO COMMUNICATION: Definition of Communication, Importance of Communication in the Workplace, Introduction to Communication Theory, Elements of Effective Communication, Barriers to Communication, Verbal and Non- Verbal Communication, Role of Culture in Communication.	5 Hours
MODULE 2:	LANGUAGE AND GRAMMAR SKILLS: Fundamentals of English Grammar, Sentence Structure and Syntax, Parts of Speech, Tenses and their Usage, Common Errors in Grammar, Punctuation and Mechanics, Effective Use of Vocabulary, Word Formation and Usage, Formal vs. Informal Language.	5 Hours
MODULE 3:	SPEAKING SKILLS: Principles of Effective Speaking, Pronunciation Drills, Sounds of English: Vowels and Consonants, Stress and Intonation, Developing Conversational Skills, Speaking with Clarity and Confidence, Public Speaking Basics, Expressing Opinions and Arguments, Active Listening and Response.	5 Hours
MODULE 4:	WRITING SKILLS: The Writing Process: Planning, Drafting, Revising, Editing, Writing Effective Sentences and Paragraphs, Paragraph Development and Coherence, Formal and Informal Writing Styles, Writing Emails and Workplace Documents, Writing Reports and Memos, Common Writing Errors and How to Avoid Them	5 Hours
MODULE 5:	PRACTICAL LANGUAGE APPLICATION: Building Vocabulary through Context, Word Choice and Precision, Constructing Grammatically Correct Sentences, Exercises in Sentence Formation, Pronunciation Drills and Accent Neutralization, Role-Plays and Dialogues, Group Discussions and Debates, Writing and Structuring Paragraphs, Linking Paragraphs for Coherent Writing.	5 Hours
MODULE 6:	PROFESSIONAL COMMUNICATION IN THE WORKPLACE: Workplace Communication Etiquette, Business Correspondence, Writing Professional Emails, Preparing Presentations, Communicating in Meetings, Handling Workplace Conversations, Persuasive and Negotiation Skills, Overcoming Communication Barriers, Strategies for Effective Workplace Communication.	5 Hours
TOTAL LECTU	RES	30 Hours

Books:

- 1. Sanjay Kumar, Pushp Lata, "Communication Skills", Oxford University Press, 2015, ISBN: 9780199457069
- 2. M Ashraf Rizvi, "Effective Technical Communication", McGraw Hill Education, 2017, ISBN 9352606108
- 3. Steven A. Beebe, Susan J. Beebe, and Mark V. Redmond, "Interpersonal Communication: Relating to Others", Pearson, 2013, ISBN-10: 020586273X, ISBN-13: 978-0205862733.

- 4. Judee K. Burgoon, Laura K. Guerrero, and Kory Floyd, "Nonverbal Communication", Routledge, 2016, ISBN-10: 1138121348, ISBN-13: 978-1138121346.
- 5. Ronald B. Adler, Lawrence B. Rosenfeld, and Russell F. Proctor II, "Interplay: The Process of Interpersonal Communication", Oxford University Press, 2017, ISBN-10: 019064625X, ISBN-13: 978-0190646257.
- 6. Joseph A. DeVito, "The Interpersonal Communication Book", Pearson, 2015, ISBN-10: 0133753816, ISBN-13: 978-0133753813.
- 7. Sarah Trenholm and Arthur Jensen, "Interpersonal Communication", Oxford University Press, 2013, ISBN-10: 0199827504, ISBN-13: 978-0199827503.
- 8. John Stewart, "Bridges Not Walls: A Book About Interpersonal Communication", McGraw-Hill Education, 2011, ISBN-10: 0073534315, ISBN-13: 978-0073534312.
- 9. Pamela J. Kalbfleisch, "Interpersonal Communication: Evolving Interpersonal Relationships", Routledge, 2013, ISBN-10: 0805816611, ISBN-13: 978-0805816619.
- 10. Mark L. Knapp, John A. Daly, and Frederick P. M. Boster, "Interpersonal Communication Handbook", Sage Publications, 2011, ISBN-10: 1412974747, ISBN-13: 978-1412974745.

				PRO	OGF	RAM	10	PROGRAM SPECIFIC OUTCOMES (PSO)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	-	I	I	I	I	I	I	-	2	3	-	-	2	-	-
CO2	-	I	1	-	1	1	1	-	-	3	-	-	-	-	-
CO3	-	I	I	I	I	I	I	-	2	3	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C05	1	I	1	1	1	1	I	-	-	2	-	-	-	-	-
C06	-	-	-	-	-	-	-	-	2	3	-	-	-	-	-

W E S T B E N G A L Department of Electrical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 2 nd Sem.
Course Title: Basic Electrical & Electronics Engineering	Subject Code: TIU-ES-UEE-T12101
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Aanalyze and describe the basic electrical quantities, circuit elements, and their voltagecurrent relationships.
- 2. Design and analyze diode circuits, transistor biasing, and operational amplifier applications.
- 3. Understand the operation and characteristics of semiconductor devices like diodes, BJTs, JFETs, and MOSFETs.
- 4. Analyzing differential working principles of single-phase transformers, including voltage transformation and regulation.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand Basic Electrical Concepts	K2
CO2	Analyze DC Electrical Networks	K4
C03	Analyze AC Circuits and Power Systems	K4
C04	Understand Semiconductor Devices and Applications	K2
C05	Design and Analyze Analog Circuits	КЗ
C06	Understand Transformer Principles and Applications	K2

COURSE CONTENT :

MODULE 1:	Introduction	4 Hours						
Basic electrical quantities, Voltage, Current, Power. Basic Electrical elements								
Inductance,Cap	acitance. Their voltage-current relationship.Voltage and current source	ces.						
MODULE 2:	DC Network Analysis	5Hours						
KCL and KVL	and their applications in purely resistive circuits.Concept of lin	near, bilateral						
networks. Sour	ceconversion, Star-Delta conversion.							
MODULE 3:	DC Network Theorems	5 Hours						
Superposition	Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Po	wer Transfer						

Theorem.							
MODULE 4: Sinusoidal Stead	ly State Analysis		5 Hours				
Matrix and Determinant: Revision	Matrix and Determinant: Revision of matrix and determinant, rank and nullity, solutions of system						
of linear equations using Dete	erminants and Matrices; Eigenva	alues and eigenve	ctors, Cayley-				
Hamilton Theorem, transformat	ion of matrices, adjoint of an ope	rator, normal, unit	ary, hermitian				
and skew-hermitian operators, q	uadratic forms.	1					
MODULE 5:	3-Ph circuits		5 Hours				
Introduction to 3-Ph quantities.	3-ph star and delta connection. I	Phasor diagram for	3-ph system,				
Balanced 3-phloads, measureme	nt of 3-ph power.						
MODULE 6:	Semiconductor Devices		5 Hours				
Energy bands in solids.Intrins	sic and extrinsic semiconductor	s.P-N junctions. S	Semiconductor				
diodes: ZenerandVaractor diode	s. Bipolar transistors (operation, c	haracteristics).					
MODULE 7:			4 Hours				
Diode Circuits, BJT biasing & Ope	eration of JFET, MOSFET						
MODULE 8:	OPAMPs		5 Hours				
Properties of an ideal and a pra	actical OPAMP. Block diagram. Co	ncept of Virtual Sh	nort, Inverting				
and Non-inverting amplifiers, Summing and Differencing amplifier, Differentiator and Integrator.							
MODULE 9: 1-Ph Transformers							
Faraday's Law, EMF generation	(dynamic and static), B-H curve	e, Construction and	d operation of				
single phasetransformer: voltage and current transformation, no-load operation, voltage regulation							
on resistive load.							
TOTAL LECTURES			43Hours				

Books:

1. D. Chattopadhyay, P. C. Rakshit, Funndamentals of Electric Circuit Theory, S. Chand. Publications

2. D. Chattopadhyay, P.C. Rakshit, Electronics Fundamentals and Applications, New Age International Publisher

Supplementary Reading:

1. Salivahanan and P. Kumar, Circuit Theory, Vikas Publishing House

2. Kulshreshtha, Basic Electrical Engineering: Principles and Application, Tata McGraw-Hill.

	PROGRAM OUTCOMES (PO)											PRO OU	GRAM SPEC TCOMES (P	CIFIC SO)	
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	3	
C01	3	2	I	I	-	-	-	-	-	-	I	-	2	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	1	-	-	-	-	-	-	-	-	2	-	-
C05	2	2	3	-	-	-	-	-	-	-	-	-	3	-	-
C06	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-

W E S T B E N G A L

Department of Computer Science and Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Problem Solving using Data Structures	Subject Code: TIU-ES-UCS-T12101
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Introduce fundamental data structures such as arrays, linked lists, stacks, queues, and trees, and their role in computational problem-solving.
- 2. Develop logical and analytical thinking by applying data structures to efficiently store, process, and manipulate data in various programming scenarios.
- 3. Enhance problem-solving abilities by selecting appropriate data structures based on efficiency, scalability, and real-world applicability.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Recall and describe fundamental data structures, including arrays, linked lists, stacks, queues, and trees.	K1
CO2	Explain searching and sorting techniques, along with their efficiency on different data structures.	K2
CO3	Apply array and linked list operations to solve computational problems.	K3
CO4	Implement stack and queue-based algorithms for expression evaluation and problem-solving scenarios.	К3
C05	Examine tree-based data structures (Binary Trees, BSTs) and their traversal techniques for problem-solving.	K4
C06	Compare different data structures based on their efficiency, scalability, and real-world applicability.	K4

COURSE CONTENT:

MODULE 1:	BASIC CONCEPTS OF DATA REPRESENTATION	6 Hours				
Abstract Data Types, Fundamental and Derived Data Types, Representation, Primitive Data						
Structures.						
MODULE 2:	ARRAYS	9 Hours				
Representation of Arrays, Single and Multidimensional Arrays, Address Calculation Using						
Column and Row Major Ordering, Various Operations on Arrays, Application of Arrays in Matrix						
Multiplication	, Sparse Polynomial Representation and Addition. Solving different pro	blems using				

Arrays: Find the missing number in an array, Rotate an array to the right by k steps by reversing							
the array and its sub-arrays, Move all zeros in the array to the end while maintaining the relative							
order of non-z	ero elements using a two-pointer approach.						
MODULE 3	LE 3 SEARCHING AND SORTING ON VARIOUS DATA STRUCTURES 6 Hours						
Sequential Se	arch, Binary Search, Comparison-based sorting concepts, Bubble Son	rt, Insertion					
Sort, Selection	l Sort.						
MODULE 4	STACKS AND QUEUES	9 Hours					
Representatio of Stacks: Co Expression U parentheses a stack operations us two stacks.	n of Stacks and Queues using Arrays and Linked List, Circular Queues. A nversion from Infix to Postfix and Prefix Expressions, Evaluation sing Stacks. Solving different problems using stack and queue: re balanced, Finds the next greater element for each item in a stack, ons using two queues, Reverses the elements of a queue, Implem ing two stacks, Implements a circular queue, Implements queue oper	Applications of Postfix Validates if Implements tents queue ations using					
Module 5	Linked Lists	6 Hours					
Single Linked	List, Operations on List, Polynomial Representation and Manipulation U	Jsing Linked					
Lists, Circular	Linked Lists, Doubly Linked Lists. Solving different problems using	Linked List:					
Reverse the order of elements in a singly linked list, Merge two linked lists into one list.							
Module 6	Trees	9 Hours					
Binary Tree, Binary Search Tree, Traversal Methods: Preorder, In-Order, Post-Order Traversal							
(Recursive An	d Non-Recursive), Representation (Non-threaded and Threaded) of T	rees and its					
Applications.							
	TOTAL LECTURE	45 Hours					

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	I	-	1	1	-	-	-	-	-	1	2	-	-
CO2	2	3	I	-	2	I	-	-	-	-	-	1	2	-	-
CO3	2	2	I	-	3	I	-	-	-	-	-	1	3	-	-
CO4	2	-	3	-	3	I	-	-	-	-	-	1	3	-	-
C05	3	2	-	-	2	-	-	-	-	-	-	1	2	-	-
C06	2	3	-	-	2	-	-	-	-	-	-	2	3	-	2

W E S T B E N G A L Department of Mathematics

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: MATHEMATICS II B	Subject Code: TIU-BS-UMA-T12101B
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. understand the basics of complex analysis.
- 2. understand algebraic and geometric representations of vectors and vector spaces and various operations on vector spaces.
- 3. solve differential equations with series solution method
- 4. learn the applications of the definite and indefinite integrals.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	analyze complex functions based on analyticity, integrability along a contour, calculus of residue, etc. and its applications in engineering.	K4
CO2	develop an understanding of vector spaces and inner product spaces.	K4
CO3	identify linear transformations on vector spaces and to determine the corresponding matrix representation.	K4
CO4	determine the solution of ordinary differential equations using a series solution method.	K4
CO5	formulate some special functions, namely, Legendre and Bessel functions.	K4
C06	develop an understanding of Integral calculus and its applications such as determining the area between two curves, the surface of revolution etc.	K4

COURSE CONTENT:

MODULE 1:	Complex analysis	10 Hours				
Complex analy	sis: Limit, continuity, differentiability and analyticity of functions, Ca	uchy-Riemann				
equations, line	e integrals, Cauchy Goursat theorem (statement only), independe	ence of path,				
Complex integ	Complex integration over a contour, Cauchy's integral formula, derivatives of analytic functions,					
Taylor's series, Laurent's series, Zeros and singularities, Residue theorem, evaluation of real						
integrals by co	ntour integration.					
MODULE 2:	Linear algebra	10 Hours				

Linear Algebra: Vector spaces over any arbitrary field, linear combination, linear dependence and independence, basis and dimension, linear transformations, matrix representation of linear transformations, linear functional, dual spaces, Inner product spaces, norms, Gram-Schmidt

process, orthonormal bases, projections and least squares approximation.					
MODULE 3: Series solution of ODE	10 Hours				
Series solution of ODE: Review of power series, Ordinary point, regular and irreg	gular singular				
point, series solution near ordinary and regular singular point. Legendre's equation	and Legendre				
polynomials, Bessel's equation and Bessel's functions.					
MODULE 4: Integral calculus	8 Hours				
Riemann Integral, fundamental theorem of integral calculus, applications of defi	nite integrals,				
improper integrals, Beta and Gamma functions, reduction formulae. Double and trip	le integration,				
change in order of integration, Jacobian and change of variables formula. Parametriza	ation of curves				
and surfaces.					
MODULE 5: Vector calculus	7 Hours				
Vector fields, divergence and curl, Line integrals, Green's theorem, surface integral, Gauss and					
Stokes' theorems with applications.					
TOTAL LECTURES	45 Hours				

Books:

- 1. Higher Engineering Mathematics, B. S. Grewal
- 2. Advanced Engineering Mathematics, Kreyszig
- 3. A Text Book of Engineering Mathematics, Rajesh Pandey
- 4. Engineering Mathematics, B. K. Pal, K. Das

	PROGRAM OUTCOMES (PO)									PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	-	-	-	-	-	-	-	-	-	1	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	2	-
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-

W E S T B E N G A L Department of Physics

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Physics	Subject Code: TIU-BS-UPH-T12101
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Provide a foundational understanding of basic concepts of physics.
- 2. Develop problem-solving skills and apply the basic concepts of physics in real-world phenomena.
- 3. Foster critical thinking and analytical skills in applying theoretical knowledge to practical physics problems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Apply basic concepts of mechanics and acoustics	КЗ				
C02	Interpret the concepts of physical optics and explain the principles of lasers					
	along with their applications.					
CO3	Categorize di electric and magnetic properties of materials leading to					
	Electromagnetic laws and to analyze crystal structure					
	Identify the basic properties of conductors, semiconductors, and insulators					
CO4	based on their band structure, and demonstrate their behavior using					
	fundamental band theory concepts.					
C05	Apply the principles of wave-particle duality to analyze physical phenomena					
	followed by basic quantum mechanical calculations					
C06	Classify ensembles and differentiate between classical and Quantum					
	statistical mechanics					

COURSE CONTENT :

MODULE 1:	CLASSICAL MECHANICS	5 Hours									
Vector Calculus- gradient of a scaler field, divergence & curl of a vector field with their physical											
significance; Frame of references, Mechanics of a single particle - conservative and non-											
conservative f	Forces, Conservation theorems of linear momentum & angular	momentum,									
Conservation law of energy, Potential energy function F= -grad V											
MODULE 2:	ACCOUSTICS	4 Hours									
Harmonic oscillator, Damped harmonic motion – over-damped, critically damped and lightly											
damped oscillators; Attenuation Coefficients of a vibrating system, Forced oscillations and											
resonance, Mechanical and electrical analogy of forced vibration.											
MODULE 3: OPTICS	8 Hours										
---	------------------	--	--	--	--	--	--	--	--	--	--
Interference : Interference of electromagnetic wave, condition for constructive an	d destructive										
interferences, position of maximum and minimum on the screen (no deduction), Thin film -											
conditions for thin film appears bright and dark (No deductions) - Newton's ring											
Diffraction- Different types of diffraction, Fraunhofer diffraction at single slit (Intensity											
distribution curve) ,Diffraction pattern in a Multi Slits & plane diffraction grating (no deduction of											
the intensity for N slits is necessary), Resolving power of a grating (definition & formulae)											
Polarization of light: Introduction, polarization by reflection - Brewster's law, Malu	is Law, double										
refraction, Nicol Prism and its uses, Detection of plane, elliptical and circularly polariz	zed light										
Lasers: Properties of laser, Spontaneous and Stimulated emission, working prin	ciple of laser										
production, amplification of light by population inversion, Einstein's theory of A and	B coefficients;										
He - Ne laser , applications of lasers.											
MODULE 4: ELECTROMAGNETISM	5 Hours										
Concept of displacement current, Maxwell field equations and their physical significa	nces, Maxwell										
field equations for different medium, Maxwell's wave equation & its solution for free	space,										
Electromagnetic energy flow & pointing vector	1										
MODULE 5: QUANTUM MECHANICS	6 Hours										
Introduction to quantum physics, Wave nature of particles, de Broglie hypothesi	s, Uncertainty										
principle, wave functions, concept of probability & probability density, operator	s, Expectation										
values. Applications of Schrödinger equation: Schrodinger equation, elementary	y concepts of										
particle in a 1D box, quantum harmonic oscillator and Hydrogen atom problem.											
MODULE 6: SOLID STATE PHYSICS	6 Hours										
Elementary idea of crystal structure -lattice, basis ,unit cell, cubic crystal system,	co-ordination										
number& packing factor, Bragg's law and its importance.											
Magnetisation- Magnetic permeability and susceptibility, Relation among B,H&	M. Types of										
magnetic materials, Comparative study among them. Hysteresis& importance of hyst	eresis curve										
MODULE 7: STATISTICAL MECHANICS	5 Hours										
Qualitative ideas about phase space, macrostates and microstates, density of states,	, MB, FD & BE										
statistics (no deduction necessary), fermions, bosons , Fermi distribution at zero a	nd non – zero										
temperature.											
MODULE 8: SEMICONDUTOR PHYSICS	6 Hours										
Concept of Fermi gas & Free electron theory of metals, Effective mass of an	electron & its										
importance: concept of hole, Classification of materials on the basis of band structure	e, Intrinsic and										
extrinsic semiconductors, Effect of temperature on an extrinsic semiconductor, Fern	ni energy level										
and its position for intrinsic and extrinsic semiconductors.											
TOTAL LECTURES	45 Hours										

1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited

- 2. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education private limited
- 3. Engineering Physics ,Dattuprasad Ramanlal Joshi, McGraw Hill Education private limited
- 4. A text book on Basic Engineering Physics, A. Chakrabarti, Chhaya prakashani private Ltd.
- 5. A text book on Integrated Engg. Physics, A. Chakrabarti, Chhaya prakashani private Ltd.

6. A text book on Applied Engineering Physics, Chhaya prakashani private Ltd.

- 7. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 8. Statistical Physics, L.D. Landau, E M.Lifshitz, Butterworth-Heinemann

9. Optics, Ghatak, McGrawHill Education India Private Limited

10. Engineering Physics , Hitendra K Malik & amp; A K Sing, McGraw Hill Education private limited

Advanced Acoustics, Dr. D.P. Raychaudhuri, The new bookstall, Revised Ninth Edition, 2009
 Concepts of Modern Physics (Sixth Edition) by Arthur Beiser (Published by McGraw-Hill).
 Introduction to Solid State Physics (January2019) by Charles Kittel (Published by Wiley)

			ł	PRO	GR	AM	OU	PRO OU	GRAM SPE FCOMES (I	CIFIC PSO)					
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	-	-	-	-	-	I	-	-	-	-	3	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	1	2	-	-
CO4	3	2	-	-	-	-	-	I	-	-	-	-	2	-	-
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Engineering Mechanics	Subject Code: TIU-ES-UME-T12101
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. understand the basics of vector mechanics and its applications in engineering mechanics
- 2. analyze problems in statics
- 3. analyze problems in dynamics of particles

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	understand the basics of vector mechanics and its application in engineering mechanics.	K2
CO2	understand different force systems and the methods of finding their resultants and to be well-versed with the conditions of equilibrium in 2D.	K2
CO3	apply the laws of static equilibrium in solving problems and perform analysis of statically determinate trusses.	K4
CO4	compute centroids of plane areas, composite areas and to be able to compute area moments of inertias and radii of gyration of plane figures.	К3
C05	understand basic principles of kinematics of particles, plane, rectilinear and curvilinear coordinate systems and projectile motion	К3
C06	understand basic principles of kinetics of particles leading to Newton's laws and to be able to apply the work-energy and the linear impulse-linear momentum theorems in solving typical problems	К3

COURSE CONTENT :

MODULE 1:	INTRODUCTION	4 Hours									
Introduction: Fundamentals of Mechanics: Introduction to mechanics; Basic concepts – mass,											
space, time and force; Particles and rigid bodies; Scalars and vectors; Free, sliding, fixed and unit											
vectors; Addition	on, subtraction and multiplication of two vectors; scalar triple product	and vector									
product of 3 ve	ctors.										
MODULE 2:	FORCE SYSTEMS AND EQUILIBRIUM	9 Hours									
Force systems: Introduction to different force systems; Composition of forces – triangle,											
	and a charge law of fearers and addition of the annual of fearers. Deschat										

parallelogram and polygon law of forces, and addition of two parallel forces; Resolution of forces; Moment of a force, Varignon's theorem; Couples; Force-couple system; Resultant of a force system

Equilibrium: Force Systems & Equilibrium: Free body diagram, equilibrium conditions in 2										
dimensions, equilibrium of systems involving friction.										
MODULE 3:	STRUCTURES	5 Hours								
Plane Truss: Statically determinate trusses; Force analysis of a truss - method of joints, method of										
sections										
MODULE 4:	DISTRIBUTED FORCES	7 Hours								
Distributed For	ces: Line, area and volume distributions of forces; Centre of gravity; C	entre of mass;								
Centroids of pla	ane figures; Centroids of composite areas. Moment of Inertia: Area mo	ment of								
inertia; Perpen	dicular and Parallel axes theorems pertaining to moment of inertia; Ra	dius of								
gyration.										
MODULE 5:	KINEMATICS OF PARTICLES	8 Hours								
Kinematics of F	Particles: Differential equations of kinematics – plane, rectilinear and c	urvilinear								
motions; Carte	sian co-ordinate system; Normal and tangent co-ordinate system, proje	ectile motion.								
MODULE 6:	KINETICS OF PARTICLES	12 Hours								
Kinetics of Part	icles: Newton's second law of motion; Work and energy principle – gra	avitational								
potential energy, elastic potential energy, kinetic energy, power, work-energy theorem, principle of										
impulse and m	omentum.									
TOTAL LECTU	RES	45 Hours								

- 1. J. L. Meriam and L. G. Kraige, Engineering Mechanics (Vol.1 & 2), Wiley India 2017.
- 2. Shames I. H., Rao G. K. M., Engineering Mechanics, Pearson, 2005.
- 3. Khurmi R.S. , A Textbook of Engineering Mechanics, S. Chand, 2018.
- 4. Bhavikatti S. S, Engineering Mechanics, New Age International Publishers, 2021.

			F	PRO	GR	AM	OU	PRO OUT	GRAM SPE FCOMES (I	CIFIC PSO)					
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	I	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	I	1	-	-	-	-	-	-	-	-	2	-	-
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	2	-	-	-	-	-	-	-	-	-	_	2	-	-

W E S T B E N G A L

Department of Computer Science & Engineering

Program: B.Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Problem Solving using Data Structures Lab	Subject Code: TIU-ES-UCS-L12101
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop a strong foundation in data structures and algorithms with a focus on both linear and non-linear structures.
- 2. Implement and analyze searching, sorting, and graph algorithms to optimize problem-solving efficiency.
- 3. Enhance programming skills by applying data structures in real-world applications and evaluating their complexity.
- 4. Understand and assess the time and space complexity of algorithms for efficient software development.

COURSE OUTCOME :

The student will be able to:

C01	Understand fundamental data structures such as arrays, linked lists, stacks, queues, trees, and graphs along with their applications.	К2
CO2	Implement various data structures using programming techniques to efficiently store, manipulate, and retrieve data.	К3
CO3	Analyze and apply different searching and sorting algorithms to optimize problem-solving.	K4
CO4	Evaluate the time and space complexity of algorithms to improve computational efficiency.	К5
C05	Apply data structures and algorithms to solve real-world problems and develop efficient software solutions.	К3
C06	Explore advanced data structures and algorithmic techniques for tackling complex computing challenges.	K6

MODULE 1:	INTRODUCTION	6 Hours							
Basic Concepts of Data Representation: Abstract Data Types, Fundamental and Derived Data									
Types, Representation, Primitive Data Structures.									
MODULE 2:	ARRAY REPRESENTATION	6 Hours							

Arrays: Representation of Arrays, Single and Multidimensional Arrays, Address Calculation Using Column and Row Major Ordering, Various Operations on Arrays, Application of Arrays Matrix Multiplication, Sparse Polynomial Representation and Addition. Solving different problems using Arrays such as the followings: Find the missing number in an array, Rotate an array to the right by k steps by reversing the array and its sub-arrays, Move all zeros in the array to the end while maintaining the relative order of non-zero elements using a two-pointer approach.

indification in a serie content a sing a two pointer approach.												
MODULE 3:	SEARCHING AND SORTING TECHNIQUES	6 Hours										
Searching and	Searching and Sorting on Various Data Structures: Sequential Search, Binary Search, Comparison											
based sorting concept, Bubble sort, Insertion Sort, Selection Sort.												
MODULE 4:	STACK AND QUEUE	9 Hours										
Stacks and Queues: Representation of Stacks and Queues using Arrays and Linked List, Circular												
Queues. Appl	ications of Stacks, Conversion from Infix to Postfix and Prefix	Expressions,										
Evaluation of	Postfix Expression Using Stacks. Solving different problems using state	ck and queue										
such as Valida	ates if parentheses are balanced, Finds the next greater element for e	ach item in a										
stack, Implen	nents stack operations using two queues, Reverses the elements	of a queue,										
Implements q	ueue operations using two stacks, Implements a circular queue, Imple	ments queue										
operations us	ing two stacks.											
MODULE 5:	LINKED LISTS	9 Hours										
Linked Lists: S	Single Linked List, Operations on List, Polynomial Representation and	Manipulation										
Using Linked	Lists, Circular Linked Lists, Doubly Linked Lists. Solving different pro-	oblems using										
Linked List su	ich as Reverse the order of elements in a singly linked list, Merge tw	o linked lists										
into one list.												
MODULE 6:	TREE DATA STRUCTURES AND TRAVERSALS	9 Hours										
Trees: Binary	Tree, Binary Search Tree, Traversal Methods: Preorder, In-Order	r, Post-Order										
Traversal (Re	ecursive And Non-Recursive), Representation (Non-threaded and	Threaded) of										
Trees and its A	Applications.											
TOTAL LAB H	IOURS	45 Hours										

Books:

- 1. "Data Structures in C" by Tanenbaum, Moshe J. & Augenstein, PhilipC
- 2. Gilberg and Forouzan: "Data Structure- A Pseudocode approach with C" by Thomson publication
- 3. "Fundamentals of Data Structure" (Schaum's Series) Tata-McGraw-Hill.
- 4. "Fundamentals of data structure in C" Horowitz, Sahani & Freed, Computer Science Press.
- 5. "Data Structures Using C" by Reema Thareja

			F	PRO	GR	AM	OU	PRO OUT	GRAM SPE FCOMES (I	CIFIC PSO)					
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	-	1	2	-	I	-	-	-	-	1	2	-	-
CO2	2	-	3	-	3	-	I	-	-	-	-	1	3	-	-
CO3	3	3	-	-	2	-	I	-	-	-	-	1	2	-	-
C04	3	3	-	-	2	-	-	-	-	-	-	2	2	-	-
CO5	2	2	3	-	3	-	-	-	-	-	-	2	3	-	2

WESTBENGAL

Department of Electrical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Basic Electrical and Electronics Engineering Lab and Simulation	Subject Code: TIU-ES-UEE-L12101
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. introduce fundamental electrical and electronic circuit theorems and develop analytical skills for solving electrical networks.
- 2. familiarize students with essential circuit components, including R-L-C circuits, diodes, rectifiers, and fluorescent lamps, and their practical applications.
- 3. enhance hands-on laboratory skills by conducting experiments on circuit analysis, diode characteristics, and rectifier efficiency evaluation.

COURSE OUTCOME :

The student will be able to:

C01	Identify and understand fundamental electrical and electronic circuit theorems and their applications.	K1
CO2	Explain the working principles of R-L-C circuits, diodes, rectifiers, and fluorescent lamps.	K2
CO3	Apply circuit theorems such as Superposition and Thevenin's Theorem to analyze electrical networks.	К3
CO4	Conduct experiments to measure and analyze V-I characteristics of P-N junction and Zener diodes.	К3
C05	Evaluate the efficiency and power factor of electrical circuits, rectifiers, and fluorescent lamps.	K4
C06	Compare different rectifier circuits and analyze their output waveforms and ripple factors.	K4

Experiment 1	Verification of Superposition Theorem 5 Hor								
Theoretical foundation of superposition theorem, Application in linear electrical circuits, Step-by-									
step circuit analy	step circuit analysis with multiple voltage/current sources, Practical applications in circuit design,								
troubleshooting, and network analysis.									
Experiment 2	Study of R-L-C Series Circuit	6 Hours							

Characteristics of resistance (R), inductance (L), and capacitance (C) in AC circuits, Impedance (Z) and phase angle, Voltage and current phase relationships, Leading and lagging power factor,										
Practical applications in circuit analysis and troubleshooting.										
periment 3 Verification of Thevenin's Theorem 6 Hours										
Theoretical foundation of Thevenin's theorem, Converting complex circuits into Thevenin										
equivalent, Measuring Thevenin voltage (Vth) and resistance (Rth), Practical applications in	n circuit									
design and network analysis.										
Experiment 4 Characteristics of Fluorescent Lamp	5 Hours									
Gas discharge and phosphor coating in light production, Role of starter, choke (ballas	st), and									
electrodes, Measuring voltage, current, and power consumption, Efficiency comparison with										
incandescent and LED lamps, Impact of inductive ballast on power factor and improvement										
methods, Performance comparison of electromagnetic vs. electronic ballasts, Energy	savings,									
lifespan, and environmental concerns (mercury content).										
Experiment 5Familiarization with Basic Electronic Components6	6 Hours									
Identification, specifications, and testing of R, L, and C components (Color codes), Potentio	ometers,									
switches (SPDT, DPDT, DIP), Breadboards and Printed Circuit Boards (PCBs), Active comp	ponents:									
Diodes, BJTs, JFETs, MOSFETs, Power transistors, SCRs, LEDs.										
Experiment 6 Study of V-I Characteristics of P-N Junction Diode in Forward Bias	5 Hours									
Depletion layer and barrier potential, Forward bias operation, Breakdown voltage and Peak	Inverse									
Voltage (PIV), Knee voltage and ideal PN junction diode characteristics.										
Experiment 7V-I Characteristics of Zener Diode in Reverse Bias6	6 Hours									
Depletion layer and barrier potential, Reverse bias operation, Breakdown voltage and Peak	Inverse									
Voltage (PIV), Knee voltage and ideal Zener diode characteristics.										
Experiment 8Study of Half-Wave and Full-Wave Rectifier6	6 Hours									
Half-wave and full-wave rectifiers (Center-tap and Bridge), Output waveforms and voltage										
regulation, Ripple factor and rectifier efficiency.										
TOTAL LAB HOURS 45	5 Hours									

- 1. Boylestad, R. L., & Nashelsky, L. (2015). Electronic devices and circuit theory (11th ed.). Pearson.
- 2. Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (2018). Engineering circuit analysis (9th ed.). McGraw-Hill Education.
- 3. Sedra, A. S., & Smith, K. C. (2016). Microelectronic circuits (7th ed.). Oxford University Press.
- 4. Malvino, A. P., & Bates, D. J. (2016). Electronic principles (8th ed.). McGraw-Hill Educatio

				PR	OGF	RAM	10	PROG OUT	RAM SPEC COMES (P	CIFIC SO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
C04	2	I	I	3	2	1	-	-	-	-	-	-	3	-	-

C05	2	2	-	2	-	-	-	-	-	-	-	-	2	-	-
C06	2	-	-	3	2	-	-	-	-	-	-	-	3	-	-

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Engineering Drawing and Graphics	Subject Code: TIU-ES-UME-L12191
Contact hours/week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop an understanding of the fundamental concepts and significance of engineering drawing in various engineering disciplines.
- 2. Acquire skills to construct and analyze engineering curves, projections of points, lines, planes, and solids.
- 3. Learn to interpret and create orthographic and isometric projections using conventional and computer-aided drafting techniques.
- 4. Gain proficiency in using drafting software for preparing accurate engineering drawings.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the fundamental principles and scope of engineering drawing K2									
	Demonstrate profisional in constructing and analyzing different engineering									
CO2		КЗ								
	curves.									
CO3	Apply projection techniques for points, lines, planes, and solids in different									
005	orientations.	K5								
C04	Develop skills to create orthographic and isometric projections accurately.									
C05	Interpret and convert between pictorial, orthographic, and isometric views of	KJ KJ KG								
005	objects.	K2, K3, K0								
C06	Utilize computer-aided drafting tools to create precise engineering drawings.	K6								

MODULE 1:	Introduction	6 Hours						
Scope of Engineering Drawing in all Branches of Engineering, Uses of Drawing Instruments and								
Accessories, Ty	Accessories, Types of Arrowheads, Lines, Dimension System, Representative Fraction, Types of							
Scales (plain and Diagonal Scale).								
MODULE 2:	Engineering Curves	6 Hours						

Classification of Engineering Curves, Application of Engineering Curves, Co	nstructions of								
Engineering Curves (Conics-ellipse; parabola; hyperbola with Tangent and Normal).									
MODULE 3: Projection of Points and Straight Lines 9 Hours									
Types of Projections - Oblique, Perspective, Orthographic and Isometric Projection	s; Introduction								
to Principal Planes of Projections, Projections of Points located in all four Quadrants	; Projections of								
lines inclined to one of the Reference Plane and inclined to two Reference Planes.									
MODULE 4: Projections of Planes and Solids	9 Hours								
Projections of various planes (Polygonal, Circular, Elliptical shape inclined to one o	f the reference								
planes and two of the reference planes) and Projections of Solids (cube, prism, pyr	amid, cylinder,								
cone and sphere).									
MODULE 5: Orthographic Projections & Isometric View/Projections	8 Hours								
Projections on Principal Planes from Front, Top and Sides of the Pictorial view of a	an Object, First								
Angle Projection and Third Angle Projection system; Full Sectional Orthographic Vie	ws, Conversion								
of Orthographic Views into Isometric Projection, View or Drawing; Isometric Scale.									
MODULE 6:Overview of Computer Aided Drafting Tools1 Hours									
Introduction to Computer Aided Drafting Software; Basic Tools; Preparation of Orthographic									
Projections and Isometric Views Using Drafting Software.									
TOTAL 39 Hours									

Main Reading:

1. Jolhe, Dhananjay A, Engineering Drawing an introduction to AutoCAD, Tata McGraw-Hill.

Supplementary Reading:

N.D. Bhatt, Engineering Drawing, Charotar Publishing House Pvt. Ltd.

Online Content:

1. https://nptel.ac.in/courses/112103019

2. https://nptel.ac.in/courses/112104172

				PR	OG	RA	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	-	-	-	-	I	I	-	-	-	-	-	2	-	-
CO2	2	1	1	1	-	1	I	-	-	-	-	-	2	-	-
CO3	2	2	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	-	3	-	-	-	-	-	-	-	-	-	3	-	-
C05	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	1	-	2	-	3	-	-	-	-	-	-	-	2	-	-

W E S T B E N G A L

Department of Physics

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.					
Course Title: Physics Lab	Subject Code: TIU-BS-UPH-L12101					
Contact Hours/Week : 0–0–3(L–T–P)	Credit: 1.5					

COURSE OBJECTIVE:

Enable the student to:

- 1. Provide hands-on experience with experimental techniques in optics, electricity, and mechanics
- 2. Develop a strong understanding of the fundamental physical constants and properties of materials
- 3. Enhance students' problem-solving and analytical skills through real-world applications

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Develop hands-on skills in setting up experimental apparatus and accurately measuring physical quantities.	К3
CO2	Analyze experimental data using appropriate methods, interpret results, and assess the reliability and accuracy of measurements.	K4
CO3	Correlate theoretical physics principles with experimental observations to understand real-world applications.	K5
CO4	Demonstrate the ability to troubleshoot experimental issues and make informed decisions to optimize accuracy.	К5
CO5	Document experiments systematically and effectively present results, including calculations and error analysis.	K6
C06	Work collaboratively in a lab environment, maintaining safety protocols and contributing to group discussions and analysis.	K6

EXPERIMENT : 1	NEWTON'S RING	3 Hours						
Determination of wave	Determination of wavelength of a monochromatic light by Newton's ring							
EXPERIMENT : 2	REFRACTIVE INDEX OF WATER	3 Hours						

Determination of refractive index of water using travelling microscope								
EXPERIMENT : 3	HALL COEFFICIENT OF SEMICONDUCTOR	3 Hours						
Determination of Hall coefficient of semiconductor								
EXPERIMENT : 4	CAREY-FOSTER BRIDGE FOR UNKNOWN RESISTANCE	3 Hours						
Determine of unknown	n resistance using Carey-Foster bridge							
EXPERIMENT : 5	STEFAN'S BOLTZMAN CONSTANT	3 Hours						
Determination of Stefa	n-Boltzmann constant							
EXPERIMENT : 6	BAND-GAP OF SEMICONDUCTOR	3 Hours						
Determination of Band	l gap of a given semiconductor by four probe method							
EXPERIMENT : 7	YOUNG'S MODULUS BY FLEXURE METHOD	3 Hours						
Determination of Your	ng's modulus of elasticity of the material of a bar by the method	of flexure						
EXPERIMENT : 8	MODULUS OF RIGIDITY BY DYNAMIC METHOD	3 Hours						
Determination of mod	ulus of rigidity of the material of a wire by dynamic method							
EXPERIMENT : 9	COEFFICIENT OF VISCOSITY	3 Hours						
Determination of coeff	icient of viscosity of water by Poiseulle's capillary flow method							
EXPERIMENT : 10	PLANCK'S CONSTANT USING PHOTOELECTRIC EFFECT	3 Hours						
Determination of Plan	k's constant using photocell							
EXPERIMENT : 11	THERMOELECTRIC POWER	3 Hours						
Determination of thermoelectric power of a given thermo-couple								
Total Hours (Any s	21 Hours							

1. Laboratory Manual

2. Advanced Practical Physics (Volume I and II) for BSc Physics Lab, B. Ghosh & K.G Mazumdar

3. An advanced course in practical physics by D . Chattopadhyay and P.C Rakshit, New central agency(P)Ltd.

				PR	OGF	RAM	10	PROG OUT	RAM SPEC COMES (P	CIFIC SO)					
	1	2	3	4	5	6	7	8	9	1 0	1 1	12	1	2	3
C01	2	2	I	-	1	-	-	-	-	-	-	-	2	-	-
CO2	2	3	I	-	I	I	-	-	-	I	-	1	2	-	-
CO3	3	2	I	-	I	I	-	-	-	I	-	-	2	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	-	-
CO5	1	2	I	1	1	I	-	-	-	3	-	-	1	-	-
C06	-	-	-	-	-	-	2	-	3	2	-	-	-	-	-

W E S T B E N G A L

Department of English

Program: B. Tech in Mechanical Engineering	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Career Advancement & Skill Development-II Communication Skill	Subject Code: TIU-HSM-UEN-S12191
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop fluency in spoken and written English for clear, precise, and confident communication.
- 2. Train in formal writing, reports, proposals, and multimedia presentations.
- 3. Strengthen people skills, time management, and analytical reading for workplace success.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Explain fundamental communication principles and assess their relevance in workplace interactions.									
CO2	Apply grammar and language skills to construct precise and coherent spoken and written communication									
CO3	Demonstrate fluency in spoken English through practicing pronunciation drills, developing vocabulary, and engaging in interactive conversations.	K4								
CO4	Construct well-organized sentences and paragraphs to enhance professional writing.	K3								
C05	Develop and revise written communication by employing strategies for drafting, editing, and proofreading	K3								
C06	Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.	K4								

MODULE 1:	COMMUNICATION THEORY AND WORKPLACE DYNAMICS: Definition of Communication, Communication Models, Workplace Communication Strategies, Effective Messaging, Organizational Communication, Cultural Communication, Verbal and Non-Verbal Cues, Barriers to Communication, Interpersonal and Group Communication	5 Hours
MODULE 2:	ADVANCED LANGUAGE AND GRAMMAR PROFICIENCY: Morphology and Syntax, Sentence Structuring, Advanced Grammar Rules, Tense Modulation, Phrasal Verbs,	5 Hours

	Modifiers, Cohesion and Coherence, Lexical Resource, Semantics, Formal vs. Informal Register	
MODULE 3:	STRATEGIC SPEAKING AND ORAL PROFICIENCY: Phonetics and Phonology, Pronunciation Refinement, Stress and Intonation, Articulation and Clarity, Persuasive Speaking, Argumentation and Debate, Spontaneous Speaking, Interview Techniques, Business Pitches, Active Listening Strategies	5 Hours
MODULE 4:	PROFESSIONAL AND TECHNICAL WRITING: Writing Process Methodologies, Text Structuring, Precision in Writing, Report Writing, Business Proposals, Formal Correspondence, Executive Summaries, Editing and Proofreading, Technical Documentation, Press Releases, Persuasive and Analytical Writing	5 Hours
MODULE 5:	APPLIED LANGUAGE AND COMMUNICATION EXERCISES: Lexical Expansion, Idiomatic Expressions, Context-Based Learning, Grammar in Context, Role-Plays and Simulations, Speech Analysis, Storytelling Techniques, Collaborative Writing, Dialogues, Workplace Case Studies.	5 Hours
MODULE 6:	CORPORATE COMMUNICATION AND LEADERSHIP SKILLS: Professional Etiquette, Negotiation Tactics, Conflict Resolution, Crisis Communication, Leadership and Persuasion, Presentation Design, Cross-Cultural Communication, Media and Public Relations, Digital Communication Ethics, High-Stakes Conversations	5 Hours

TOTAL LECTURES 30 Hours

Books:

- 1. Sanjay Kumar, Pushp Lata, "Communication Skills", Oxford University Press, 2015, ISBN: 9780199457069
- 2. M Ashraf Rizvi, "Effective Technical Communication", McGraw Hill Education, 2017, ISBN 9352606108
- 3. Sarah Trenholm and Arthur Jensen, "Interpersonal Communication", Oxford University Press, 2017, ISBN-10: 019064625X, ISBN-13: 978-0190646257
- 4. Claude G. Théoret, "Advanced Communication Skills: 7 Keys to Personal and Professional Growth", Independently Published, 2020, ISBN-10: 1656945618, ISBN-13: 978-1656945615..
- Ronald B. Adler, Lawrence B. Rosenfeld, and Russell F. Proctor II, "Interplay: The Process of Interpersonal Communication", Oxford University Press, 2017, ISBN-10: 019064625X, ISBN-13: 978-0190646257.
- 6. Joseph A. DeVito, "The Interpersonal Communication Book", Pearson, 2015, ISBN-10: 0133753816, ISBN-13: 978-0133753813.
- 7. Mark L. Knapp and John A. Daly, "The SAGE Handbook of Interpersonal Communication", SAGE Publications, 2011, ISBN-10: 1412974747, ISBN-13: 978-1412974745.3.
- 8. John Stewart, "Bridges Not Walls: A Book About Interpersonal Communication", McGraw-Hill Education, 2011, ISBN-10: 0073534315, ISBN-13: 978-0073534312.
- 9. Pamela J. Kalbfleisch, "Interpersonal Communication: Evolving Interpersonal Relationships", Routledge, 2013, ISBN-10: 0805816611, ISBN-13: 978-0805816619.
- 10. Deborah Tannen, "Talking from 9 to 5: Women and Men at Work", William Morrow Paperbacks, 2001, ISBN-10: 0060959622, ISBN-13: 978-0060959623.

BROCDAM OUTCOMES (DO)	PROGRAM SPECIFIC
PROGRAM OUTCOMES (PO)	OUTCOMES (PSO)

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	-	-	-	-	-	-	-	2	3	2	-	-	-	-	-
CO-2	-	-	-	-	-	-	-	-	2	3	-	-	-	-	-
CO-3	-	-	-	-	-	-	-	-	2	3	-	-	-	-	-
CO-4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO-5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO-6	-	-	-	-	-	-	-	2	2	3	-	-	-	-	-

SEMESTER 3

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Fluid Mechanics	Subject Code: TIU–UME–T211
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. understand the properties of fluids and fluid statics and fluid kinematics
- 2. learn important concepts of continuity equation, Bernoulli's equation for flow visualization
- 3. understand various flow measuring devices
- 4. study in detail about boundary layers in a flow

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the concept of fluid and its properties and hydrostatic forces on fluid	K2
CO2	Describe the basic laws of fluid flow and flow patterns	K2
CO3	Determine equations of motion of fluid flow and their applications in measuring devices	K4
CO4	Derive the linear and angular momentum equations for a control volume and apply the conservation equations to the viscous flows through parallel plates and pipes	К3
C05	Gain basic concepts of boundary layer theory, flow separation and velocity profiles	K2
C06	Develop the basic concept of ideal fluids and their behavior and the principle of dimensional analysis	K2

MODULE 1:	INTRODUCTION AND FLUID STATICS	4 Hours							
Definition of fluid, continuum hypothesis, different properties and classifications of fluid, Fluid									
Statics: pressu	re at a point, Pascal's law, variation of pressure within a static fluid	l –equation of							
hydrostatic pro	essure distribution, variation of properties in static atmosphere; me	easurement of							
pressure; hydr	ostatic thrust on plane and curved surfaces; buoyancy, stability of su	ubmerged and							
floating bodies	floating bodies.								
MODULE 2:	FLUID KINEMATICS	5 Hours							
Preliminaries of Eulerian and Lagrangian description of fluid flow: velocity and acceleration of fluid									

narticles in restilinger and survilinger as ordinates, different types of flow, stream line, streak line
particles in recumear and curvinnear co-ordinates, unreferit types of now, stream line, streak line
and path line; stream filament and stream tube; principle of conservation of mass; deformation of a
MODULE 2. ELUD DVNAMICS
MUDULE 3: FLUID DYNAMILS 5 HOURS
Principle of conservation of linear momentum, Euler's equation of motion along a streamline and
of unsteady three dimensional now; derivation of Bernoulli's equation and physical significance of different terms, explications of Derneulli's equation in flow measurement devices, storagetion tube
Ditot tube, Venturi motor, orifice motor
MODULE A: ADDITION OF LINEAR AND ANCHLAR MOMENTUM
Linear momentum equation analysis of force everted by a fluid stream on a solid boundary – jet
impingement, thrust on pine hands atc, principle of conservation of angular momentum and its
annlications
MODULE 5: VISCOUS INCOMPRESSIBLE FLOWS 8 Hours
Characteristics of laminar and turbulent flow: Reynolds experiment critical Reynolds number
laminar flow through nine – Hagen Poiseuille equation Flow through closed conduits: Darcy
Weisbach equation friction factor of closed conduits flow through noncircular ducts. Moody's
diagram and its use: minor losses – at sudden expansion at sudden contraction at bends at values
and fittings etc. analysis of simple pipe network problems Basic concept of turbulence and
turbulent flow Dynamics of viscous flows: equation of motion for viscous flow – two-dimensional
laminar flow between flat parallel plates and annulus.
MODULE 6: BOUNDARY LAYER THEORY 7 Hours
Concept of boundary layer, boundary layer thickness, displacement thickness, momentum
thickness, growth of boundary layer; Prandtl boundary layer equations, Von Karman's momentum
integral equation for a boundary layer, skin friction drag coefficient for laminar and turbulent
boundary layer; boundary layer in pipe flow, friction velocity; separation of boundary layer, form
drag, method of drag reduction; lift and drag on submerged bodies.
MODULE 7: FLOW OF IDEAL FLUIDS 9 Hours
Rotation of a fluid particle, vorticity, rotational and irrotational motion; velocity potential function,
circulation, stream function, flow net; governing equation for two dimensional irrotational motion
and examples; superposition of simple irrotational flows, combination of a source and a sink,
Rankine half body and Rankine oval, doublet and its strength, superimposition of a uniform flow
and a doublet; vortex motion; combination of a uniform flow, doublet and a free vortex, Magnus
effect, Kutta-Joukowski's theorem.
MODULE 8:PRINCIPLES OF PHYSICAL SIMILARITY AND DIMENSIONAL3 Hours
ANALYSIS
Concept and types of physical similarity; Dimensional analysis and Buckingham Pi theorem;
similarity and model studies.
TOTAL LECTURES 45 Hours

- 1. S. K. Som, G. Biswas and S. Chakraborty, "Introduction to Fluid Mechanics and Fluid Machines", McGraw Hill Education (India), Third Edition, 2017, ISBN: 978-0071329194.
- 2. R. K. Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, Tenth Edition, 2019, ISBN: 978-8131808153.
- 3. F. M. White, "Fluid Mechanics", McGraw Hill Education (India), Ninth Edition, 2022, ISBN: 978-9355322043.
- 4. R. W. Fox, A. T. McDonald and P. J. Pritchard, "Introduction to Fluid Mechanics", John Wiley & Sons, Eighth Edition, 2010, ISBN: 978-0470547557.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	-	I	-	-	-	-	-	-	-	-	-	2	-	-	
CO2	3	2	I	I	-	-	-	I	1	-	-	-	2	-	-	
CO3	3	-	2	-	-	-	-	-	-	-	-	-	2	-	-	
CO4	3	2	2	-	-	-	-	-	-	-	-	-	2	-	-	
C05	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-	
C06	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-	

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.				
Course Title: Thermodynamics	Subject Code: TIU-UME-T213				
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4				

COURSE OBJECTIVE :

Enable the student to:

- 1. Comprehend thermodynamic concepts, including systems, control volumes, properties, and equilibrium, along with the Zeroth, First, and Second Laws.
- 2. Evaluate air-standard, vapor power, and refrigeration cycles, incorporating entropy, exergy, and energy analysis for efficiency assessment.
- 3. Utilize thermodynamic principles to analyze and optimize thermal energy conversion systems, including gas-vapor mixtures and psychrometric processes.
- 4. Integrate theoretical knowledge with practical applications to enhance the efficiency and sustainability of thermal systems

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understanding Thermodynamic Principles by remembering fundamental concepts, systems, properties, and thermodynamic laws.	K1
CO2	Apply Energy Conservation to analyze heat and work interactions in closed/open systems using First Law.	К3
CO3	Analyze System Efficiency by Assessing entropy, reversibility, and energy availability using Second Law.	K4
CO4	Analyze Thermodynamic Properties by study phase behavior, property charts, and equations of state	КЗ
CO5	Assess Power & Refrigeration Cycles by understanding air-standard, Rankine, and refrigeration cycles for efficiency	K2
C06	Examine Gas-Vapor Mixtures by Applying thermodynamic laws to gas- vapor mixtures and psychrometric processes.	К3

MODULE 1:	BASICS OF THERMODYNAMICS	6 Hours					
Microscopic and Macroscopic viewpoints in thermodynamics. Fundamental concepts of System,							
Control volume, State, Property, Equilibrium, Processes etc. The Zeroth law of thermodynamics:							
Thermal equili	brium. Temperature. Principle of thermometry. International practica	al temperature					

scale. Different energy forms-stored energy, energy in transition. Definitions. He	eat and Work
	0.11
MODULE 2: FIRST LAW OF THERMODYNAMICS	8 Hours
First law of Thermodynamics: Joule's experiment, Statement of First Law, He	eat and work
interactions, Thermodynamics work and Internal energy, Energy as property of syst	tem, First Law
applicable to Closed system, Thermodynamic processes and calculation of work, Hea	t transfer, and
internal energy, Heat as Path Function, First law applicable to open system, stead	y flow energy
equation, Steady flow energy equation for various Steady flow devices, Unsteady stat	e systems and
Relation of Steady flow energy equation with Euler and Bernoulli's Equations, PMM	-1, limitations
of first law.	
MODULE 3: SECOND LAW OF THERMODYNAMICS AND ENTROPY	8 Hours
Limitations of the first law of thermodynamics. Steadily operating systems - Heat	t engine, Heat
Pump and refrigerator. Thermal efficiency. Coefficient of Performance. Carnot cycle.	Statements of
the second law of thermodynamics. Equivalence of Kelvin Planck and Clausius stat	ements of the
second law of thermodynamics. Corollaries. Entropy. Reversibility and Irreversibilit	ty. Second law
analysis of control volume. Entropy generation. Reversible work. Availability. Irrever	sibility
MODULE 4: PROPERTIES OF PURE SUBSTANCES	6 Hours
Thermodynamics properties of pure substances in solid, liquid and vapour	phases. P-V-T
behaviour simple compressible substances. Phase rule. State postulate. Thermodyn	amic property
tables and charts. Ideal and Real gases. Equations of state. Compressibility facto	r. Generalized
compressibility chart. Problems T-ds relations. Maxwell equations. Clapeyron equa	ation, Clausius
Clapeyron equation. Joule-Thompson coefficient. Compressibility and expansion coefficient.	ficient.
MODULE 5: THERMODYNAMIC CYCLES	12 Hours
Carnot cycle, Air Standard Cycles Otto, Diesel, Dual, Sterling, and Brayton cycles. Gas	turbine cycles
with intercooling, reheating and regeneration. Use of air tables for gas power of	cycle analysis.
Rankine cycle, Reheat cycle, Availability analysis of cycles. Refrigeration Cycles	vcles: Vapour
Compression Refrigeration cycles, Vapour Absorption Refrigeration cycles, P	-h chart, Air
Refrigeration cycle	
MODULE 6: THERMODYNAMICS OF MIXTURES	4 Hours
Thermodynamics of Mixtures: Mixture of ideal gases. Mixture of ideal gas and va	pour. Laws of
thermodynamics for gas-vapour mixtures, Psychometrics. Thermodynamic	analysis of
psychometric processes, Thermodynamic relations for multi-component systems.	J
TOTAL LECTURES	44 Hours**

1. Engineering Thermodynamics by P. K. Nag, McGraw Hill Education.

2.Thermodynamics: An Engineering Approach by Y.A. Cengel and M.A. Boles, McGraw Hill Education (India) Private Limited.

3. Fundamentals of Thermodynamics by C. Borgnakke and R.E. Sonntag, John Wiley and Sons.

4. Fundamentals of Engineering Thermodynamics by M. J. Moran and H. N. Shapiro, Wiley India Pvt. Ltd.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
C01	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-				
CO2	3	2	1	I	I	I	I	I	-	-	-	-	2	-	-				
CO3	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-				

CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	2	1	I	I	I	I	-	I	-	-	-	2	-	-

W E S T B E N G A L Department of Mechanical Engineering

Department of Meen	
Program: B. Tech in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Strength of Materials	Subject Code: TIU-UME-T215
Contact hours/week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. understand the basic concepts of the stresses and strains for different materials.
- 2. understand the behavior of beams subjected to shear loads.
- 3. analyse and understand principal stresses due to the combination of two dimensional stresses on an element and failure mechanisms in materials.
- 4. evaluate the behavior of torsional members, columns and struts.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Grasp the fundamental concepts in Strength of Materials and apply them in the analysis of problems in Structural Mechanics.	K2
CO2	Determine the forces, moments, stresses and deflections which arise in basic structural members like bars, beams, shafts, columns.	K3
CO3	To analyze the thin-walled pressure vessels of cylindrical and spherical Geometries under circumferential and radial loading.	K4
CO4	Understand the concepts of principal stresses and strains which arise because of coordinate transformation.	K2
C05	Analyze the stresses developed in various members under the action of combined axial, bending and torsional loadings.	K4
C06	Create new ideas and apply them in the field of Solid Mechanics and Design.	K3

MODULE 1:	EQUILIBRIUM OF A DEFORMABLE BODY	9 Hours							
Surface and bo	Surface and body forces, equations of equilibrium, internal resultant loadings, shear, normal and								
axial forces, sta	te of stress at a point, shear and normal stresses, stress tensor, avera	ge normal and							
shear stresses,	allowable state design, factor of safety. Deformation, normal and shea	r strain, small							
strain analysis	, strain tensor. Tension-compression test, stress-strain diagram, tr	ue stress and							
engineering str	ess, stress-strain behavior of ductile and brittle materials, Hooke's la	aw for normal							
and shear stres	sses, Poisson's ratio, strain energy, resilience and toughness. Elastic c	leformation of							
an axially loaded member, principle of superposition, statically indeterminate axially loaded									
members, force method of analysis									
MODULE 2:	TORSIONAL DEFORMATION OF A CIRCULAR SHAFT	5 Hours							

Torsion formula, solid and hollow circular members, power transmission and shaft design, angle of								
twist, statically indeterminate torque-loaded members, thin-walled tubes.								
MODULE 3:SHEAR AND BENDING MOMENT IN BEAMS6 Hours								
SFD & BMD, beam sign convention, differential relations between shear, bending	g moment and							
intensity of distributed loading, bending deformation of a straight member, the fl	exure formula,							
composite beams, reinforced concrete beam, curved beams, Shear in straight	members, the							
transverse shear formula, limitations of the formula, shear flow in built-up members,	shear centre.							
MODULE 4: PLANE-STRESS TRANSFORMATION	6 Hours							
General equations, principal stresses and planes, maximum in-plane shear stress, M	lohr's circle for							
plane stress and its graphical construction. Plane strain transformation: gene	eral equations,							
principal strains and planes, maximum in-plane shear strains, Mohr's circle of plan	e strain, strain							
rosette.								
MODULE 5: THIN-WALLED PRESSURE VESSELS 3 Hours								
State of stress caused by combined loadings, namely, axial-bending, torsion-bending, axial-torsion-								
bending.								
MODULE 6: THE ELASTIC CURVE	6 Hours							
moment-curvature relation, slope and displacement by direct integration, Macaula	ay's method of							
singularity functions, slope and displacement by moment-area method, principle of	superposition,							
statically indeterminate beam analysis using direct integration method, moment-ar	ea method and							
method of superposition.								
MODULE 7: STRAIN ENERGIES IN TENSION-COMPRESSION, TORSION AND	5 Hours							
BENDING								
Castigliano's theorems and their applications to solve statically determinat	e and							
indeterminate beam problems.								
	F Hours							
MODULE 6: BUCKLING OF CULUMINS 5 HOURS								
Ideal columns with pinned supports, critical loads, columns with various types of								
supports,concept of effective length, eccentrically loaded columns, secant formula.								
TOTAL LECTURES 45 Ho								

1. B. J. Goodno and J. M. Gere, "Mechanics of Materials" Cengage Learning, 2020, ISBN-13: 978-0-357-37784-0.

2. R. C. Hibbeler, "Mechanics of Materials" Pearson, 2018, ISBN 13: 978-1-292-17820-2.

3. S. Timoshenko, "Strength of Materials" CBS Publishers, 2021, ISBN-13-978-8123910307.

				P	ROG	RAM	1 O U	тсо	MES	5 (PO)			PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	2	1	-	-	-	-	-	-	-	-	-	3	-	-	
CO2	3	3	I	-	-	I	-	-	-	-	-	-	3	-	-	
CO3	3	3	1	-	-	-	-	-	-	-	-	-	3	-	-	
CO4	3	2	1	-	-	-	-	-	-	-	-	-	3	-	-	
CO5	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-	
C06	3	2	3	-	-	-	-	-	-	-	-	-	3	-	2	

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester:2nd Yr., 3rd Sem.							
Course Title: Material Science	Subject Code: TIU-UME-T217							
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3							
Prerequisite Course: Chemistry (TIU-UCH-T106)								

Course Objective:

Enable the students to

- Fundamental knowledge of material structures and defects
- Concept of diffusion and understanding mechanical behavior of metals
- Interpret phase diagrams, and analyze heat treatment processes
- Knowledge of microstructure of ferrous and non-ferrous alloys

Course Outcome:

On completion of the course, the student will be able to:

C01	Identify the properties of metals with respect to crystal structure and	K2							
	understand crystal imperfections in such structures								
CO2	2 Concepts of different diffusion mechanisms and laws								
CO3	Understand mechanical properties of ferrous and non-ferrous alloys and solve								
	simple numerical								
C04	Interpret binary phase diagrams, heat treatment processes of metals and								
	solving simple problems								
C05	Learn about different ferrous and non-ferrous alloys								
C06	Describe the concept of sample preparation for metallographic study	K2							

Course Content:

MODULE 1:	Structure	7 Hours							
Introduction to	Introduction to materials science; Crystal system; Miller indices for directions and planes; Crystal								
imperfections: C	haracteristics of dislocations, generation of dislocations; Imperfectio	ns in crystalline							
solids and their r	solids and their role in influencing various properties.								
MODULE 2:	Diffusion 4 Hours								
Diffusion in met	als, Application of diffusion, Types of diffusion, Diffusion mechanis	sms, Fick's laws,							
Factors influence	e diffusion in metal.								
MODULE 3: Mechanical Properties 8 Hours									
Tensile and compression test, Hardness, Fracture toughness (impact test), Creep, Fatigue, brittle and									

ductile fracture o	ductile fracture of metallic materials.									
MODULE 4:	Metals and Alloys	12								
		Hours								
Solid solutions; Gibb's phase rule; binary phase diagrams; lever rule; Invariant phase reactions; iron- carbon phase diagram; TTT and CCT diagram; Heat-treatment of steels; Recovery, re-crystallization and grain growth phenomenon; General classifications, properties and applications of alloy steels: tool steels, stainless steels, cast irons.										
MODULE 5:	Non-ferrous materials	6								
		Hours								
Copper base allo Nickel base alloy	ys: brass, bronze; Aluminum base alloys: designation of Al-Alloys, Al s.	-Cu, Al-Si alloys;								
MODULE 6:	Metallography	5								
		Hours								
Study of microstructure of metal sample.										
TOTAL LECTUR	ES	39 Hours								

Recommended Books:

Main Reading

- 1. Mechanical Metallurgy by G.E. Dieter, McGraw Hill.
- 2. Material Science and Engineering and Introduction by W. D. Callister, Wiley.
- 3. Principles of Materials Science by W.F. Smith, McGraw Hill.

Supplementary Reading

- 1. Physical Metallurgy, V. Singh, Standard Publishers.
- 2. The Science and Engineering of Materials by S.R. Askland and P.P. Phule, Thomson Brooks/Cole.
- 3. Heat Treatments: Principles and Techniques by T.V. Rajan, C.P. Sharma and A. Sharma, Prentice Hall.
- 4. Introduction of Materials Science for Engineers by J.F. Shackelford and M.K. Muralidhara, Pearson.

				P	ROG	RAM	1 O U	тсс	MES	5 (PO)	PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	I	I	-	1	I	-	-	-	-	3	-	-
CO2	3	2	-	I	-	-	-	-	-	-	-	-	2	-	-
CO3	3	3	2	-	-	-	-	1	-	-	-	-	3	-	-
CO4	3	3	2	2	I	-	1	I	-	-	-	-	3	-	2
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	2	2	-	-	2	-	-	-	-	-	-	-	2	-	-

W E S T B E N G A L

Department of Mathematics

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.				
Course Title: Transform Calculus	Subject Code: TIU-UMA-T205				
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3				

COURSE OBJECTIVE:

Enable the student to:

- 1. provide ideas about different transformations such as Laplace, Fourier transform
- 2. apply these transformations on solving differential equations such as initial value problem, boundary value problem
- 3. learn the concept of Fourier series.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	evaluate Laplace transform, inverse Laplace transform of a function.	K4
CO-2:	apply Laplace transform in solving initial value problems.	КЗ
CO-3:	interpret Fourier series representation of a function, sine and cosine series representation.	K4
CO-4:	deduce the value of an integral with the help of Fourier integral theorem.	K4
CO-5:	determine Fourier transform, Fourier sine and cosine transform of a function.	K4
CO-6:	apply Fourier transform in solving various problems.	К3

MODULE 1:	Laplace Transform15 Hours							
Laplace Transform, properties, Inverse, Convolution, Evaluation of some integrals by Laplace Transform, Solution to initial value problems.								
MODULE 2:	Fourier Series 10 H							
Fourier Series: Periodic functions, Fourier series representation of a function, half range series, sine and cosine series, Fourier integral formula, Parseval's identity.								
MODULE 3:	Fourier Transform	20 Hours						

Fourier Transform, Fourier sine and cosine transforms. Linearity, scaling, frequency shifting and time shifting properties. Self-reciprocity of Fourier Transform, convolution theorem. Applications to boundary value problems.

TOTAL LECTURES

45 Hours

Books:

- 1. Laplace and Fourier Transforms, J. K. Goyal, K. P. Gupta, G. S. Gupta
- 2. Fourier series and Integral Transforms, Sreenadh S. et. Al.
- 3. Integral Transforms and Fourier Series, A.N. Srivastava

				P	ROG		PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	3	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-	3	-	-
C05	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	3	2	2	-	-	-	-	-	-	-	-	3	-	-

TECHNO INDIA UNIVERSITY WESTBENGAL

Program: B. Tech in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem
Course Title: Environmental Science	Subject Code: TIU-UMB- T201
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

- Understand the fundamentals of environmental pollution from chemical processes, including characterization of emissions and effluents, and relevant environmental regulations.
- Apply pollution prevention strategies through process modification, resource recovery, and waste minimization techniques.
- Analyze and design air and water pollution control systems, including particulate and gaseous emission control, and physical water treatment processes.
- Evaluate and implement biological treatment methods for wastewater and appropriate solid waste disposal techniques.

COURSE OUTCOME:

The students will be able to:

C01	Sources & types of pollution, industrial emissions & effluents, environmental laws & standards	K2
CO2	Pollution prevention, waste recovery & reuse, material & energy balance, water & emission control	К3
CO3	Selection & design of particulate and gaseous emission control systems, equipment performance analysis	K4
CO4	Wastewater treatment principles, solids removal processes (sedimentation, filtration, coagulation, etc.)	K4
CO5	Biological treatment principles, biochemical kinetics, aeration & sludge separation design	K4
C06	Solid waste disposal methods, briquetting & gasification	K4

MODULE 1:	DULE 1: INTRODUCTION					
Environment emission and	and environmental pollution from chemical process industries, charact effluents, environmental Laws and rules, standards for ambient air, noi	erization of ise emission				

and effluents.								
MODULE 2:	POLLUTION PREVENTION	8 Hours						
Process modification, alternative raw material, recovery of by co-product from industrial emission effluents, recycle and reuse of waste, energy recovery and waste utilization. Material and energy balance for pollution minimization. Water use minimization, Fugitive emission/effluents and leakages and their control-housekeeping and maintenance.								
MODULE 3:	AIR POLLUTION CONTROL	9 Hours						
Particulate em scrubbing, gas filters and abso	Particulate emission control by mechanical separation and electrostatic precipitation, wet gas scrubbing, gaseous emission control by absorption and adsorption, Design of cyclones, ESP, fabric filters and absorbers							
MODULE 4:	9 Hours							
Physical trea	Physical treatment, pre-treatment, solids removal by setting and sedimentation, filtration centrifugation, coagulation and flocculation.							
MODULE 5:	BIOLOGICAL TREATMENT	5 Hours						
Anaerobic and aerobic treatment biochemical kinetics, trickling filter, activated sludge and lagoons, aeration systems, sludge separation and drying.								
MODULE 6: SOLID DISPOSAL								
Solids waste o	disposal - composting, landfill, briquetting / gasification and incineratio	on.						
	TOTAL LECTURES 45 Hours							

- A. K. De, "Environmental Chemistry", New Age
 G. M. Masters, "Introduction to Environmental Engineering and Science", Pearson 3. G. S. Sodhi, "Fundamental Concepts of Environmental Chemistry", Narosa
- 3. E. Odum, M. Barrick& G. W. Barrett, "Fundamentals of Ecology", Brooks

Course	Articula	tion	Matrix:
--------	----------	------	---------

		PROGRAM OUTCOMES (PO)												AM SPI OMES (ECIFIC PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	3	3	2	-	-	-	2	3	-	-
CO2	3	3	3	2	2	3	2	-	-	-	-	2	3	2	-
CO3	3	3	3	3	2	2	-	-	-	-	-	2	3	2	-
CO4	3	2	2	3	-	2	-	-	-	-	-	2	2	2	-
C05	3	3	3	3	2	2	1	-	-	-	-	2	3	2	-

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.		
Course Title: Fluid Mechanics Lab	Subject Code: TIU-UME-L211		
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5		

COURSE OBJECTIVE :

Enable the student to:

correlate the classical experiments related to fluid mechanics theory

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Implement Bernoulli's theorem for steady flow through pipes	КЗ				
CO2	Understand the knowledge about the fluid motion and be able to distinguish	W2				
02	between them based on the Reynolds number	KΖ				
CO3	Analyse the flow through the Venturi meter	K4				
C04	Analyse the flow through the Orifice meter	K4				
C05	Distinguish and analyse the flow through Rectangular and V-notch	K4				
C06	Understand the concept of various types of losses that occur in flow through	V2				
100	pipes					

MODULE 1:	MODULE 1: BERNOULLI'S EQUATION							
Verification of	Verification of Bernoulli's Equation							
MODULE 2: REYNOLD'S EXPERIMENT								
Determination	Determination of Reynold's number for laminar and turbulent flow through pipes							
MODULE 3:	VENTURI-METER	3 Hours						
Determination of the co-efficient of Discharge of Venturi-meter								
MODULE 4:	ORIFICE-METER	3 Hours						
Determination	of the co-efficient of Discharge of Orifice-meter							
MODULE 5:	FRICTION OF FLUID	3 Hours						
Determination	of the co-efficient of friction of fluid flowing through the pipes							
MODULE 6:	TRIANGULAR NOTCH	3 Hours						
Determination of the co-efficient of discharge through Triangular Notch								
MODULE 7:	RECTANGULAR NOTCH	3 Hours						
Determination	of the co-efficient of discharge through Rectangular Notch							

	PROGRAM OUTCOMES (PO)											PROGRAM	M SPECIFIC OU (PSO)	JTCOMES	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	3	-	-	-	-	-	-	-	2	3	2	-
CO2	3	3	-	2	-	-	-	-	-	-	-	2	2	2	-
CO3	3	3	3	3	-	-	-	-	-	-	-	2	3	2	-
CO4	3	3	3	3	-	-	-	-	-	-	-	2	3	2	-
C05	3	3	2	2	I	-	-	I	1	-	-	2	3	2	-
C06	3	3	2	3	-	-	-	-	-	-	-	2	3	2	-

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Advanced Manufacturing Processes Lab	Subject Code: TIU-UME-L213
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. Analyze the construction and working principles of various conventional and nonconventional machining as lathe, shaper, EDM, abrasive jet, and ultrasonic machining processes.
- 2. Perform step turning, facing, plain turning, and taper turning operations on a lathe with precision.
- 3. Compare conventional and non-conventional machining techniques based on material removal mechanisms and process efficiency.
- 4. Evaluate machining parameters to optimize surface finish, accuracy, and overall performance in various machining operations.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the construction, working principles, and applications of lathe, shaper, EDM, abrasive jet, and ultrasonic machining processes.	K2
CO2	Perform step turning, facing, plain turning, and taper turning operations on a lathe while ensuring precision and dimensional accuracy	К3
CO3	Demonstrate the use of a shaper machine for grooving operations and analyze its machining characteristics.	КЗ
CO4	Illustrate the working principles and applications of Electric Discharge Machining (EDM) and evaluate its advantages over conventional machining methods.	K4
CO5	Compare the material removal mechanisms, operational efficiency, and surface finish in Abrasive Jet Machining (AJM) and Ultrasonic Machining (USM)	K4
C06	Evaluatemachining parameters for different processes to optimize efficiency, accuracy, and surface quality in both conventional and non-conventional machining operations.	К5

EXPERIMENT 1:		3 Hours				
Study of Lathe Machine						
Experiment 2:		3 Hours				
To perform step turning operations on the given Mild Steel Work-piece as per the given drawing						

Experiment 3:		6 Hours							
To machine a work-piece by facing, plain turning and taper turning operation using a lathe.									
Experiment 4:		3 Hours							
Study of Shaper Machine and Perform the Grooving operation									
Experiment 5:	3 Hours								
Demonstration of	Demonstration of Electric Discharge Machine with various working principle								
Experiment 6:		6 Hours							
Demonstration of Abrasive Jet Machining and Ultrasonic Machining									
TOTAL LECTURE	S	24 Hours							

- 1. P.N. Rao, Manufacturing Technology Vol 2-Metal Cutting and Machine Tools, Tata McGraw Hill.
- 2. P.K. Mishra, Non-Conventional machining, Narosa Publishing House

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	3	2	2	-	I	-	-	2	-	2	3	2	2
CO2	3	3	3	3	2	-	-	-	-	2	-	2	3	3	2
CO3	3	3	2	3	2	-	-	-	-	2	-	2	3	3	2
CO4	3	3	3	3	3	-	-	-	-	2	-	2	3	2	3
CO5	3	3	2	3	3	-	1	-	-	2	-	2	3	2	3
C06	3	3	3	3	3	-	-	-	-	2	-	2	3	3	3

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Career Advancement & Skill Development:Introduction to Python	Subject Code: TIU-UME-S297A
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVES:

Enable the student to:

- Introduce fundamental programming concepts such as variables, data types, and expressions.
- Develop problem-solving skills using conditional execution, loops, and functions.
- Enhance understanding of object-oriented programming with objects, lists, and modules.
- Apply Python programming techniques to real-world computational problems.

COURSE OUTCOMES:

On completion of the course, the student will be able to:

C01	Explain fundamental Python concepts such as variables, data types,	K2									
	expressions, and control structures.										
CO2	Implement conditional statements and loops to solve real-world	КЗ									
	computational problems.										
CO3	Analyze errors and debugging techniques in Python programs, including	K4									
	syntax, runtime, and logical errors.										
CO4	Develop and use functions, including built-in, recursive, and lambda functions,	K3									
	to structure programs efficiently.										
C05	Compare and evaluate different data structures like lists, objects, and	K5									
	multidimensional lists for various applications.										
C06	Design and implement Python programs using modular approaches, list	K6									
	comprehensions, and object-oriented techniques.										

Module: 1		3 Hours								
Values and Variables: Integer and string values, variables and assignment, identifiers, floating-										
point numbers, user input, controlling the print function, string formatting, multi-line strings.										
Module: 2		3 Hours								
Expressions an	d arithmetic: expressions, mixed type expressions, operator pr	ecedence and								
associativity, for	matting expressions, comments, errors – syntax errors, run-time ex	ceptions, logic								
errors, arithmeti	c expressions and operators.									
Module: 3		3 Hours								
Conditional execution: Boolean expressions, if statement, if-else statement, compound Boolean										
expressions, the	expressions, the pass statement, floating-point equality, nested conditionals, multi-way decision									

statements, mul	ti-way	versus	sequential	conditionals,	conditional	expression	ns, errors in				
conditional stater	nents										
Module: 4							3 Hours				
Iteration: The w	Iteration: The while statement, definite loops vs indefinite loops, the for statement, nested loops,										
abnormal loop te	abnormal loop termination, the break statement, the continue statement, while/else and for/else,										
infinite loops											
Module: 5							3 Hours				
Using functions:	functio	ons and r	nodules, bui	lt-in functions,	standard mat	thematical f	functions, time				
functions, rando	n num	bers, sys	stem-specific	c functions, eve	<i>al</i> and <i>exec</i> f	unctions, t	urtle graphics,				
other techniques	for imp	orting fu	inctions and	modules							
Module: 6							3 Hours				
More on functio	ns: fund	ction bas	ics, paramet	ter passing, doo	cumenting fur	nctions, son	ne examples of				
codes which inv	olve v	vriting f	unctions, cu	ustom function	ns versus sta	andard fur	ctions, global				
variables, default	parame	eters, rec	cursion, lamb	oda expression	s, generators,	local functi	on definitions				
Module 7:							3 Hours				
Objects: using ob	jects, st	tring obj	ects, file obje	ects, fraction ob	jects, turtle g	raphics obj	ects, standard				
python objects, o	python objects, object mutability and aliasing										
Module 8:							3 Hours				
Lists: using lists,	Lists: using lists, list traversal, building lists, list membership, list assignment and equivalence, list										
bounds, slicing, list element removal, lists and functions, list methods, list comprehensions,											
multidimensional lists, lists versus generators											
TOTAL LECTURE	ES						24 Hours				

- Fundamentals of Python programming, by R.S. Halterman (draft version)
 Introducing Python (Modern computing in simple packages), by B. Lubanovic, O'reilly.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	2	-	-	-	-	-	-	1	2	-	-
CO2	2	3	-	-	2	-	-	-	-	-	-	1	3	-	-
CO3	2	2	-	-	3	-	-	-	-	-	-	2	2	-	-
CO4	2	I	2	-	3	-	-	1	-	-	-	2	3	-	-
C05	2	2	-	-	3	-	-	-	-	-	-	1	2	-	2
C06	2	-	2	-	3	-	-	-	-	-	-	2	3	-	2

SEMESTER 4

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Theory of Machines	Subject Code: TIU-UME-T212
Contact hours/week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Identify and enumerate different link based mechanisms with basic understanding of motion.
- 2. Interpret and analyse various velocity and acceleration diagrams for various mechanisms and gear mechanisms.
- 3. Design and evaluate the performance of different cams and followers. Understanding the concepts of different types of belt drives.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	To get a basic knowledge of the concepts of kinematic pairs, degrees of freedom, four-bar linkage and inversions thereof and Grashoff's law of mechanisms.	К2
C02	To be acquainted with velocity analysis of mechanisms using different concepts and methods.	К3
C03	To be acquainted with acceleration analysis of mechanisms including Coriolis acceleration.	К3
C04	To understand the law governing the profile of gear tooth, fundamental law of gearing, various terms related to gears, different types of gears and different types of gear trains used in the industry for power transmission.	К2
C05	To get a broad overview of the different types of cams and their uses and to be able to draw displacement, velocity and acceleration diagrams of cams and also cam profiles for various cases.	K4
C06	To understand the concepts of different types of belt drives, friction tensions, initial tension and centrifugal tension and the phenomenon of creep in belt drives.	К2

MODULE 1:	LINKS AND MECHANISMS	13 Hours				
Introduction, H	Kinematic link and pairs, Number of degrees of freedom for plan	e mechanism,				
Inversion of m	nechanisms, 4-bar linkage, Grashoff's law, space linkage, Freudens	tein equation,				
crank & rocker	crank & rocker mechanism, drag link mechanism, non-parallel crank linkage, automobile steering					
mechanism, sli	der-crank mechanism, swinging block mechanism, oscillating arm	quick return				
mechanism, ell	iptic trammel, toggle mechanism, straight line mechanism, pantogra	aph, universal				

joint.								
MODULE 2:	VELOCITY ANALYSIS	7 Hours						
Instantaneous	Instantaneous Centre Method, Number of I-Centers, Arnold Kennedy Theorem, Method of locating							
I-centers, Relat	ive Velocity, Velocity of a point on a link by Relative velocity method	l, Velocities in						
Slider Crank M	echanism, Forces acting in mechanism, Mechanical Advantage.							
MODULE 3:	ACCELERATION ANALYSIS	7 Hours						
Introduction, A	cceleration diagram of a link, acceleration of a point on link, Acceleration	ation of Slider						
Crank Mechani	sm, Coriolis component of acceleration.							
MODULE 4:	GEARS AND GEAR TRAINS	7 Hours						
Law governing	profile of gear tooth, analysis of tooth profile for circular and non-circ	cular gears for						
fixed centre dis	stance, interference, minimum no. of teeth, gear tooth of involute & c	ycloid profile,						
spur gear, beve	el gear, rack & pinion, worm gear, differential gear train, epicyclic gea	ar train, bevel						
gear differentia	l of automobile.							
MODULE 5:	CAM AND FOLLOWER	5 Hours						
Classification	of cams and followers, plate cam, cylindrical cam – displacemen	nt, velocity &						
acceleration dia	agram, analytical treatment in the design of different types of cams.							
MODULE 6:	BELT DRIVES	6 Hours						
open and crossed belt drives, velocity ratio and slip, crowning of pulleys, types of pulleys, law of								
belting, length of belt, cone pulley, ratio of friction tensions, power transmitted, centrifugal effect								
on belts, maxin	num power transmitted by a belt, initial tension, creep.							
TOTAL LECTU	RES	45 Hours**						

1. S.S. Rattan "Theory of Machines", Tata McGraw Hill Education Pvt Ltd, 2014, ISBN- 978-93-5134-347-9.

2. R.S. Khurmi and J.K. Gupta "Theory of Machines", S Chand, 2020, ISBN-81-219-2524-X.3. A. Ghosh and A.K. Mallik "Theory of Mechanisms and Machines" , Affiliated East-West Press, 1998, ISBN-9788185938936

		PROGRAM OUTCOMES (PO)										PROGRAM	A SPECIFIC OU (PSO)	TCOMES	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	2	2	-	-	1	I	-	-	-	1	3	2	-
CO3	3	3	2	2	-	-	-	-	-	-	-	1	3	2	-
C04	3	3	3	2	-	-	-	-	-	-	-	2	3	3	2
C05	3	3	3	2	-	-	-	-	-	-	-	2	3	3	2
C06	3	2	2	2	-	-	-	-	-	-	-	2	3	2	2

W E S T B E N G A L

Department of Mechanical Engineering

Program: B.Tech. in Mechanical Engineering	Year, Semester: 2 nd Yr., 4 th Sem.
Course Title: Fluid Machines	Subject Code: TIU-UME-T216
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. demonstrate the classical experiments in fluid machines
- 2. familiarize with the construction and working of turbines and pumps
- 3. study the performance of turbines and pumps

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explore the principles of fluid machines	K2
CO-2:	Recognize the criteria for assessing fluid machines using dimensional analysis	K3
CO-3:	Investigate and apply the principle of impulse and reaction turbines	КЗ
CO-4:	Gain basic knowledge of centrifugal pump and positive displacement pumps	КЗ
CO-5:	Develop the basic concepts of compressors, fans and blowers	K3
CO-6:	Understand different hydraulic systems	K2

MODULE 1:	INTRODUCTION	3 Hours						
Classification	Classification of Fluid Machines; Energy Transfer in Fluid Machines, Introductory concepts of							
Impulse and Re	eaction Machines.							
MODULE 2:	DIMENSIONAL ANALYSIS OF FLUID MACHINES	7 Hours						
Unit quantities	and dimensional similarity - model and prototype, specific quantitie	s; Principle of						
similarity in flu	id machines; Concept of specific speed.							
MODULE 3: HYDRAULIC TURBINES								
Impulse turbin	es - constructional features and characteristics (Pelton turbine and	turbo impulse						
turbine), Desig	n of impulse turbine; Reaction turbines – constructional features and o	characteristics						
(Francis turbin	e and Kaplan turbine) and design criteria; Draft tube.							
MODULE 4:	HYDRAULIC PUMPS	10 Hours						
Centrifugal pur	Centrifugal pump and its characteristics, Design components of centrifugal pump; Pumps in series							
and parallel, losses in pumps, Stodola's slip factor; NPSH, Cavitation – cause and remedies, Thoma's								
cavitation para	meter, runaway speed; Axial Flow Pump and Reciprocating Pump.							
MODULE 5:	COMPRESSORS, FANS AND BLOWERS	13 Hours						

Basic Principles and Energy Transfer in Centrifugal Compressors, Performance Characteristics of Centrifugal Compressors; Basic Principles and Energy Transfer in Axial Flow Compressors; Fans and blowers. MODULE 6: HYDRAULIC SYSTEMS 2 Hours Fluid coupling, torque converter, hydraulic lift, crane, accumulator, etc. – elementary description and performance. 42 Hours

TOTAL LECTURES

Books:

- 1. S. K. Som, G. Biswas and S. Chakraborty, "Introduction to Fluid Mechanics and Fluid Machines", McGraw Hill Education (India), Third Edition, 2017, ISBN: 978-0071329194.
- 2. J. Lal, "Hydraulic Machines including Fluidics", Metropolitan Book Co., Sixth Edition, 2016, ISBN: 978-8120004405.
- 3. R. K. Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, Tenth Edition, 2019, ISBN: 978-8131808153.
- 4. S. L. Dixon and C. A. Hall, "Fluid Mechanics and Thermodynamics of Turbomachinery", Butterworth-Heinemann Inc, Seventh Edition, 2013, ISBN: 978-0124159549.

		PROGRAM OUTCOMES (PO)											PROGRAM	A SPECIFIC OU (PSO)	TCOMES
	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3			
C01	3	2	2	1	-	-	-	-	-	-	-	2	3	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	2	3	2	-
CO3	3	3	3	2	-	-	-	-	-	-	-	2	3	3	-
C04	3	3	3	2	1	-	-	-	-	-	-	2	3	2	-
C05	3	2	3	1	1	-	-	-	-	-	-	2	3	2	-
C06	3	2	2	1	1	-	-	-	-	-	-	2	3	2	-

WESTBENGAL

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2 nd Yr., 4 th Sem.						
Course Title: Manufacturing Processes	Subject Code: TIU-UME-T218						
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4						
Prerequisite Course: Material Science (TIU-UME-T217)							

Course Outcome:

On completion of the course, the student will be able to:

C01	Understand various casting and mould manufacturing processes for metals	K2
CO2	Concepts of pattern design and different casting methods	K2
CO3	Gating system design and solving simple problems	K3
CO4	Explain various forming techniques for metal works (forging, rolling, sheet	K2
	metal working, extrusion, drawing, etc.)	
CO5	Numerical on various metal forming processes (forging, rolling and extrusion)	K3
C06	Understand various welding processes as per engineering application and	K4
	explore different solid and liquid state joining processes	

Course Content

MODULE 1:	Casting 12 Ho							
Introduction to casting, Sand casting, Pattern: types, pattern materials, allowances; Moulding machines, materials; Cores, gate, runner and riser; Moulding processes: green sand moulding, dry sand mould, CO_2 gas molding, cement-based sand molding, plaster moulding, metallic moulding, Casting defects and repair.								
MODULE-2:Advance Casting Processes6 Ho								
Precision investme die casting, centrifu	nt casting, shell moulding, permanent mould casting, hot and co gal casting, and continuous casting.	old chamber						
MODULE-3: Forming 10								
Hot and cold working; various metal forming techniques and their analysis, viz., forging, rolling, sheet metal working, extrusion, drawing, spinning, swaging, thread rolling, tube piercing etc.; Defects in metal working.								
MODULE-4:Welding and joining processes:11 hours								
Soldering; Brazing; Fusion and non-fusion welding processes; oxy-acetylene gas welding, arc welding, and resistance welding; Welding defects and inspection; Various modern welding								

processes like Tungsten Inert Gas, Metal Inert Gas, Submerged arc welding.					
Module-5: Powder metallurgy					
Basic idea on powd	Basic idea on powder metallurgy				
TOTAL LECTURES					

Recommended Books:

Main Reading

- 1. Manufacturing Technology: Foundry, Forming and Welding by P.N. Rao, Tata McGraw Hill Education Private Limited.
- 2. Manufacturing Processes for Engineering Materials by S. Kalpakjian and S.R. Schmid, Pearson Education.
- 3. Manufacturing Science by A. Ghosh and A.K. Mallik, Wiley Eastern.

Supplementary Reading

- 1. Welding and Welding Technology by R.L. Little, McGraw-Hill Education (India) Pvt. Limited.
- 2. Principles of Manufacturing Materials and Processes by J. S. Campbell, McGraw-Hill Education (India) Pvt. Limited.
- 3. Production Engineering Sciences, P. C. Pandey and C. K. Singh, Standard Publishers Ltd.
- 4. Welding Metallurgy by G.E. Linnert, AWS. Heat Treatments: Principles and Techniques by T.V. Rajan, C.P. Sharma and A. Sharma, Prentice Hall.
- 5. Introduction of Materials Science for Engineers by J.F. Shackelford and M.K. Muralidhara, Pearson.

		PROGRAM OUTCOMES (PO)										PROGR	AM SPECIFIC (PSO)	OUTCOMES	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	1	I	I	I	-	-	-	-	2	3	2	-
CO2	3	2	2	1	I	I	I	-	-	-	-	2	3	2	-
CO3	3	3	3	2	1	I	I	-	-	-	-	2	3	2	-
CO4	3	2	2	2	I	I	I	-	-	-	-	2	3	3	-
CO5	3	3	3	2	I	I	I	-	-	-	-	2	3	3	-
C06	3	2	2	1	-	-	-	-	-	-	-	2	3	2	-

W E S T B E N G A L Department of Mathematics

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Probability & Statistics	Subject Code: TIU-UMA-T202
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. understand the basics of probability and statistical analysis
- 2. analyze the nature of problems solved with probability distribution
- 3. understand basic statistics, dispersion, regression and curve fitting technique

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	To illustrate the foundations of probabilistic and statistical analysis mostly used in varied applications	K4
CO2	To investigate the probability using basic knowledge and fundamental concepts of probability.	K4
CO3	To formulate and analyze several well-known distributions, including Binomial, Poisson, Normal, Exponential Distributions etc., and understand their scope of application to real world problems	K4
CO4	To establish the basic statistical concepts and measures of central tendencies	K4
CO5	To calculate Measures of dispersion – standard deviation, variance	K4
C06	To analyze observations in terms of regression and curve fitting	K4

MODULE 1:	PROBABILITY	25 Hours					
Probability: Cl	Probability: Classical, relative frequency and axiomatic definitions of probability, mutually						
exclusive event	s, independent events, conditional probability, Bayes' Theorem.						
Random Varia	bles: Discrete and continuous random variables, probability mas	s, probability					
density and cur	nulative distribution functions, mathematical expectation, moments.						
Distributions:	Distributions: Uniform, Binomial, Geometric, Poisson, Negative binomial, Exponential, Normal						
distributions, Jo	pint and marginal distribution.						
MODULE 2:	STATISTICS	20 Hours					
Graphical repre	esentation of data, Frequency distributions						

Measures of central tendencies – mean, median, mode

Measures of dispersion – standard deviation, variance

Principle of Least Squares, curve fitting, regression analysis.	
TOTAL LECTURES	45 Hours

Books:

- 1. Ravish R Singh, Mukul Bhatt Engineering Mathematics, McGraw-Hill Education
- 2. N G Das, Statistical Methods, McGraw-Hill
- 3. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, McGraw-Hill.

	PROGRAM OUTCOMES (PO)									PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	2	-	-	-	-	-	-	-	1	3	2	-
CO2	3	3	-	2	-	-	-	-	-	-	-	1	3	2	-
CO3	3	3	-	3	-	-	-	-	-	-	-	1	3	3	-
CO4	3	2	-	2	-	-	-	-	-	-	-	1	3	2	-
C05	3	3	-	2	-	-	-	-	-	-	-	1	3	2	-
C06	3	3	2	3	1	-	-	-	-	-	-	2	3	3	-

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Mathematics

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.		
Course Title: Numerical Analysis	Subject Code: TIU-UMA-T204		
Contact Hours/Week : 3–0–0 (L–T–P)	Credit: 3		

COURSE OBJECTIVE:

Enable the student to:

- 1. be familiar with numerical methods of solving complicated mathematical problems
- 2. get idea about different errors, interpolation, integration.
- 3. get the concept of roots finding methods.
- 4. know the methods for solving simultaneous linear algebraic equations, initial value problems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain the concept of error in numerical analysis such as round off errors, Truncation errors.	K2
CO-2:	Develop an idea about Newton's Forward and Backward interpolation formula, Divided Difference.	K4
CO-3:	Establish the concept of numerical differentiation and develop the idea of numerical integration using Trapezoidal and Simpson's 1/3rd rules.	K4
CO-4:	Evaluate roots of polynomial and transcendental equations by Bisection, Iteration, Newton-Raphson, Regula-Falsi methods.	K4
CO-5:	Solve simultaneous linear algebraic equations by Gauss Elimination and Gauss-Seidel iteration method.	K4
CO-6:	Interpret and evaluate initial value problems numerically using Euler, Modified Euler, Runge-Kutta methods.	K4

MODULE 1:	ERROR AND APPROXIMATION	3 Hours				
Approximations and round off errors, Truncation errors and Taylor Series.						
MODULE 2:	INTERPOLATION	8 Hours				
Newton's Forward, Backward, Lagrange's interpolation and Divided Difference.						
MODULE 3:	8 Hours					
Trapezoidal, Simpson's 1/3 rd rule and differentiation at the end points of a table.						
MODULE 4:	ALGEBRAIC AND TRANSCENDENTAL EQUATIONS	6 Hours				
Determination of roots of polynomials and transcendental equations by Bisection, It						

Newton-Raphson, Regula-Falsi methods.							
MODULE 5:	SOLUTION OF LINEAR EQUATIONS 6 H						
Solutions of linear simultaneous linear algebraic equations by Gauss Elimination and Gauss Seide							
iteration methods.							
MODULE 6:	14 Hours						
Numerical solution of initial value problems by Euler, Modified Euler, Runge-Kutta method.							
TOTAL LECTU	45 Hours						

- 1. Numerical Methods: For Scientific and Engineering Computation, M. K. Jain, S. R. K. Iyengar, R. K. Jain.
- 2. Numerical Analysis, G. S. Rao.
- 3. Numerical Methods, P. Kandasamy, K. Thilagavathy, K. Gunavathi.

				PR	OG	RA	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	-	-	-	3	3	2	-	-	-	2	3	-	-
CO2	3	3	3	2	2	3	2	I	-	-	-	2	3	2	-
CO3	3	3	3	3	2	2	-	I	-	-	-	2	3	2	-
CO4	3	2	2	3	-	2	-	-	-	-	-	2	2	2	-
C05	3	3	3	3	2	2	-	-	-	-	-	2	3	2	-
C06	3	2	2	2	2	2	3	2	-	-	-	2	3	2	-

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester:2nd Yr., 4th Sem.									
Course Title: Mechanics of Materials Laboratory	Subject Code: TIU-UME-L200									
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5									
Prerequisite Course: Physics (TIU-UPH-T104); Material Science (TIU-UME-T217); Strength of Materials (TIU-UME-T215)										

Course Objective:

Enable the students to

- impart fundamental knowledge of material properties and mechanical testing methods
- develop practical skills in using mechanical testing equipment
- analyze and interpret experimental results for material performance evaluation

Course Outcome:

On completion of the course, the student will be able to:

C01	Understand the fundamental mechanical properties of materials						
CO2	Analyze the compressive strength of materials						
CO3	Apply impact testing techniques to assess material toughness						
CO4	Evaluate the hardness of materials using different hardness testing methods						
C05	Demonstrate the use of Rockwell Hardness testing machine						
C06	Correlate mechanical properties with material behavior under different loading conditions	K6					

Course Content:

EXPERIMENT NUMBER 1:		3 Hours							
To determine the ultimate tensile strength, Young's modulus, percentage of elongation,									
percentage of area reduction of mild steel.									
EXPERIMENT NUMBER 2:		3 Hours							
To conduct compression test on a	a specimen using a universal testing machine (UTM)) to determine							
ultimate compressive strength of	the material.								
EXPERIMENT NUMBER 3:		3 Hours							
To determine the impact energy absorbing characteristic of mild steel at room temperature using									
Izod impact test									

EXPERIMENT NUMBER 4:		3 Hours						
To determine the impact energy absorbing characteristic of mild steel at room temperature using								
the Charpy impact test.								
EXPERIMENT NUMBER 5:		3 Hours						
To determine the Brinell hardnes	s number of the given test specimen.							
EXPERIMENT NUMBER 6:		3 Hours						
To study the Rockwell hardness testing machine and perform the Rockwell hardness test.								
TOTAL LECTURES 18 Hours								

Recommended Books:

- 1. Mechanical Metallurgy by G.E. Dieter, McGraw Hill.
- 2. Material Science and Engineering and Introduction by W.D. Callister, Wiley.

			F	PRO	GR	AM	OU	PROGRAM SPECIFIC OUTCOMES (PSO)							
	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	3
C01	3	2	-	-	-	-	-	-	-	-	-	1	3	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	1	3	2	-
CO3	3	3	2	3	-	-	-	-	-	-	-	2	3	3	-
CO4	3	2	2	2	1	-	-	-	-	-	-	2	3	3	-
C05	2	2	3	2	2	-	-	-	-	-	-	2	3	3	-
C06	3	3	2	3	-	-	-	-	-	-	-	2	3	3	-

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.			
Course Title: Machine Drawing	Subject Code: TIU-UME-S200			
Contact Hours/Week : 0–0–3 (L–T–P)	Credit: 1.5			

COURSE OBJECTIVE :

Enable the student to:

- 1. Analyze the construction and nomenclature of screw threads, including metric, square, and Acme threads, along with the design and application of hexagonal and square nuts, washers, and bolts.
- 2. Interpret the functionality and assembly of mechanical joints such as the socket and spigot cotter joint and knuckle joint to assess their suitability in different engineering applications.
- 3. Interpret the functionality and assembly of mechanical joints such as the socket and spigot cotter joint and knuckle joint to assess their suitability in different engineering applications.
- 4. Evaluate the design and strength characteristics of riveted joints, including single and double riveted lap joints and butt joints, to determine their effectiveness in load-bearing applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the nomenclature, classification, and applications of different screw threads, nuts, washers, and bolts used in mechanical assemblies.							
CO-2:	Analyze the construction and working principles of the socket and spigot cotter joint to determine its suitability for mechanical linkages							
CO-3:	Examine the design and functionality of the knuckle joint and its role in transmitting axial loads in mechanical systems.							
CO-4:	Interpret the types and symbols of welded joints, understanding their significance in structural and fabrication applications.							
CO-5:	Evaluate the strength and performance of riveted joints, including lap and butt joints, by assessing their efficiency in load-bearing applications.							
CO-6:	Apply drafting techniques to create precise engineering drawings of screw threads, mechanical joints, and fasteners following standard conventions.	К3						

SHEET NUMBER 1:		6 Hours								
Screw Thread (Thread Nomenclature, Metric Thread, Square Thread, Acme Thread), Hexagonal										
Nut, Square Nut, Washer, Hexagonal Bolt with Hexagonal Nut and Washer										
SHEET NUMBER 2:		6 Hours								
Socket and Spigot Cotter Joint										
SHEET NUMBER 3:		3 Hours								

Knuckle Joint										
SHEET NUMBER 4:		3 Hours								
Welded Joint (Types and Symbol of Welded Joints)										
SHEET NUMBER 5:		6 Hours								
Riveted Joint (Single Riveted Lap Joint), Double Riveted Lap (Chain and Zigzag)										
Riveted (Single and Double Strap) Butt Joint.										
TOTAL LECTURES		24 Hours								

- Bhandari V. B., Design of Machine Elements, Prentice Hall of India, 2017
 A Text Book of Machine Drawing by P.S. Gill, S.K. Katariya and Sons, 2013

				Pl	ROC	GRA	М (DUT	сом	PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	-	-	-	-	-	-	-	-	1	3	2	-
CO2	3	3	3	2	-	-	-	-	-	-	-	2	3	3	-
CO3	3	3	3	2	-	-	-	-	-	-	-	2	3	3	-
CO4	2	2	2	-	1	-	I	I	-	-	-	1	3	2	-
CO5	3	3	2	2	-	-	-	-	-	-	-	2	3	3	-
C06	2	2	3	2	3	-	-	-	-	-	-	2	3	3	-

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Fluid Machines Lab	Subject Code: TIU-UME-L216
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

correlate the classical experiments of turbines and pumps related to fluid machines theory

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Apprehend the working of reaction turbine and its basic components	K2				
CO2	Apprehend the working of reaction turbine and its basic components	K2				
CO3	Comprehend the working of different type of pumps	K2				
CO4	Able to calculate the efficiency of the Centrifugal pump and Submersible pump					
	and draw the performance curves					
C05	Able to draw the performance characteristics and efficiencies of Kaplan turbine	KA				
	and Francis turbine					
C06	Understand the constructional details of a Pelton turbine in detail	K2				

MODULE 1:	FRANCIS TURBINE	3 Hours							
To draw the ch	To draw the characteristic curves of a Francis turbine								
MODULE 2:	KAPLAN TURBINE	3 Hours							
To draw the characteristic curves of a Kaplan turbine									
MODULE 3:	3 Hours								
To draw the characteristic curves of a Centrifugal pump									
MODULE 4: SUBMERSIBLE PUMP									
To draw the ch	aracteristic curves of a Submersible pump								
MODULE 5: PELTON TURBINE									
Study experime	Study experiment on the model of the Pelton turbine								
MODULE 6:	RECIPROCATING PUMP	3 Hours							
Study experiment on the model of the Reciprocating pump									
TOTAL LECTU	18 Hours								

				PI	ROC	GRA	М (DUT	сом	PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	I	1	-	-	-	-	-	-	1	2	-	-
CO2	3	2	-	1	1	-	-	-	-	-	-	1	2	-	-
CO3	2	2	-	1	2	-	-	-	-	-	-	1	3	-	-
CO4	2	I	2	2	3	-	-	-	-	-	-	2	3	-	2
CO5	2	-	2	-	3	-	-	-	-	-	-	2	3	-	2
C06	3	1	-	-	2	-	-	-	-	-	-	1	2	-	-

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Problem Solving with Advance Excel and Power BI	Subject Code: TIU-CASD-UME-S298A
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- Apply advanced Excel functions for efficient data analysis and problem-solving.
- Clean and transform data using Excel tools for accurate analysis.
- Create interactive visualizations and reports using Microsoft Power Business Intelligence.
- Perform custom calculations and advanced data analysis using expressions in Microsoft Power Business Intelligence.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the use of advanced Excel formulas such as INDEX, MATCH, OFFSET, and array functions.	K2							
CO2	Apply pivot tables, slicers, and charts to perform detailed data analysis in Microsoft Excel.								
CO3	Analyze and clean datasets in Microsoft Excel using techniques such as removing duplicates and text-to-columns.								
CO4	Develop basic interactive dashboards in Microsoft Power Business Intelligence using transformed data.								
CO5	Evaluate integration of Excel with Power Business Intelligence for effective report generation.	K5							
C06	Create advanced analytical measures using data analysis expressions in Microsoft Power Business Intelligence.	K6							

MODULE 1:	1: Advanced Excel Formulas and Functions									5 Hours		
Understand an	nd apply	advanced	Excel	formulas	such	as	INDEX,	МАТСН,	OFFSET	and	array	

functions.									
MODULE 2:	Pivot Tables and Data Analysis	4 Hours							
Perform advanced data analysis using pivot tables, slicers, and pivot charts.									
MODULE 3:	3 Hours								
Learn data cleaning techniques such as removing duplicates, handling missing values,									
columns.									
MODULE 4:	Introduction to Power BI	3 Hours							
Learn the ba	and creating								
visualizations.									
MODULE 5:	4 Hours								
Learn to integr	Learn to integrate Excel with Power BI by importing Excel data, creating reports, and publishing								
dashboards.									
MODULE 6:	5 Hours								
Understand and apply DAX for creating custom measures and calculations in Power BI.									
TOTAL LECTU	24 Hours								

1. Excel 2019 Power Programming with VBA by Michael Alexander, Dick Kusleika, Wiley.

2. Microsoft Excel 2019 Bible by Michael Alexander, John Walkenbach, Wiley.

3. The Definitive Guide to DAX by Marco Russo, Alberto Ferrari, Microsoft Press.

4. Mastering Microsoft Power BI by Brett Powell, Packt Publishing.

				PI	ROG	GRA	М (DUT	сом	PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	-	-	3	-	-	I	-	-	-	1	2	-	-
CO2	2	3	-	-	3	-	-	I	-	-	-	1	3	-	-
CO3	2	2	-	-	3	-	-	I	-	-	-	2	3	-	-
CO4	2	1	3	-	3	-	-	-	-	-	-	2	3	-	2
CO5	2	-	3	-	3	-	-	-	-	-	-	2	3	-	2
C06	2	2	-	2	3	-	-	-	-	-	-	2	3	-	3

SEMESTER 5

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr. 5thSem.
Course Title: Heat Transfer	Subject Code: TIU-UME-T301
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- identify the important modes of heat transfer and their applications
- familiarize with the conduction, radiation and convective heat transfer concepts
- learn the effectiveness and rating of heat exchangers

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Describe different modes of heat transfer	K2						
CO2	Derive the basic laws of conduction heat transfer							
CO3	Apply and analyze one-dimensional heat conduction equation including transient problems	K4						
C04	Analyze and solve problems in thermal radiation and radiation exchange between surfaces	K4						
C05	Illustrate basic knowledge of convective heat transfer	K4						
C06	Solve simple heat exchanger problems	K3						

MODULE 1:	INTRODUCTION 2 Ho								
Introduction to Heat Transfer, Rate equations in conduction, convection and radiation, relationship									
to Thermodynamics.									
MODULE 2:	MODULE 2: BASIC CONCEPTS OF CONDUCTION 4 Hours								
The conduction rate equation, thermal properties of matter; Heat diffusion equation in Cartesian,									
cylindrical and spherical coordinates, boundary and initial conditions.									
MODULE 3:	ONE-DIMENSIONAL STEADY-STATE CONDUCTION EQUATION	13 Hours							

One-dimensional steady-state conduction for plane wall, cylindrical wall, spherical wall and						
composite wall; Temperature distribution, thermal resistance, conduction with thermal energy						
generation; Heat transfer from extended surfaces (fins); Transient Conduction	i: the lumped					
capacitance method and its validity, general lumped capacitance method of analysis						
MODULE 4: INTRODUCTION TO RADIATION	7 Hours					
Fundamental properties, blackbody radiation, the Planck distribution, Wien's disp	olacement law,					
the Stefan-Boltzmann law, Kirchhoff's law; Radiation exchange between black surfac	es, view factor					
relations, radiation exchange between opaque, diffuse and gray surfaces in an en	nclosure, two-					
surface and three-surface enclosures, radiation shield.						
MODULE 5: INTRODUCTION TO CONVECTION	15 Hours					
Concept of thermal boundary layer, derivation of thermal boundary layer equations,	dimensionless					
parameters and their significance, Reynolds analogy, derivation of the energy equa	ation; External					
and internal forced convection: flat plate in parallel flow, cylinder in cross flow	w; Concept of					
thermally fully developed flow; Laminar flow in circular tubes: hydrodynamic c	considerations,					
thermal analysis and correlations; Natural convection: Physical consideratio	ns, governing					
equations, the vertical plate in natural convection.						
MODULE 6: HEAT EXCHANGERS	4 Hours					
Classification of heat exchangers, overall heat transfer coefficient; Heat exchanger (parallel-flow						
and counter-flow) analysis using LMTD and NTU method; Heat exchanger design and performance						
calculations.						
TOTAL LECTURES	45 Hours					

- 1. F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons Inc, Eighth Edition, 2020, ISBN: 978-1119722489.
- 2. Y. A. Cengel and A. J. Ghajar, "Heat and Mass Transfer: Fundamentals and Applications (SIE)", McGraw Hill Education, Fifth Edition, 2017, ISBN: 978-9339223199.
- 3. M. Thirumaleshwar, "Fundamentals of Heat and Mass Transfer", Pearson Education India, First Edition, 2006, ISBN: 978-8177585193.

	PROGRAM OUTCOMES (PO)											PROG OUT	RAM SPEC COMES (P	CIFIC SO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1	1	1	-	1	I	-	-	-	-	-	3	-	-
CO2	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-
CO4	3	3	3	2	-	-	-	-	-	-	-	-	3	3	-
C05	3	2	2	-	-	-	-	-	-	-	-	-	2	3	-
C06	3	3	3	3	2	-	-	-	-	-	-	-	3	3	2

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Design of Machine Elements I	Subject Code: TIU-UME-T311
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. introduce the fundamental principles of machine design, including strength of materials, failure theories, and material selection for mechanical components.
- 2. develop the ability to analyze and design basic machine elements and joint assemblies.
- 3. have awareness of important national and international codes related to machine design.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the fundamentals of machine design and standardization principles.	К2					
C02	Analyze different static failure theories and methods to reduce stress	К2					
	concentration.						
CO3	Apply fatigue failure theories for fluctuating load conditions.						
C04	Design shafts, keys, and couplings based on strength and functionality						
C05	Evaluate riveted joints considering efficiency and different failure modes.						
C06	Design welded and bolted joints for different loading conditions.						

MODULE 1: Introd	duction to Machine Design	6 Hours
------------------	---------------------------	---------

Design philosophy, Types of design, Basic procedure of machine design, preferred s	sizes, Fits and					
Tolerance, Surface roughness, Introduction to National and International Desig	n Codes and					
standards.						
MODULE 2: Failure Theories	7 Hours					
Theories of static failure (Principal Stress Theory, Tresca Failure criterion, Disto	ortion Energy					
Failure Theory etc.). Selection and application of failure theories. Notch sens	itivity, Stress					
concentration, stress concentration factor and methods to reduce stress concentration	n					
MODULE 3: Design Against Fluctuating Loads	9 Hours					
Different types of variable loads (e.g, reversed load, repeated load, static offset et	c.), Fatigue in					
metals, Wohler's (S-N) curve, Endurance life, Infinite life and Finite Life Design. E	Effect of mean					
stress in design life. Fatigue failure theories (e.g., Soderberg, Goodman, Modified (Goodman and					
Gerber). Infinite life and Finite Life Design. Design Life for variable load cycles, Cumul	ative damage,					
Miner's Rule, Failure under torsional and axial loading.						
MODULE 4: Design of Shafts, and Shaft Components	10 Hours					
Shafts: Types of shafts, Design of shaft by strength, Design of shaft by angle of twist, D	Design of shaft					
by ASME code. Keys: Keys and various types of keys. Design of square and flat k	eys Design of					
Couplings: Functions and applications of couplings, Muff coupling and design of n	nuff coupling,					
Clamp coupling and design of clamp coupling, Rigid flange coupling and design of flan	ge coupling.					
MODULE 5: Design of Riveted Joints	6 Hours					
Rivets and types of rivet head, Types of riveted joints, Rivet terminology, Design of	riveted joint:					
Tearing, Shearing and Crushing failure, Efficiency of riveted joint, eccentrically loaded	l rivets.					
MODULE 6: Design of Welded and Bolted Joints	10 Hours					
Types of welded joints (Butt Joint, Lap Joint, Fillet Joint), Weld terminology and symb	ools, Design of					
welded joints: transverse and parallel fillet weld. Eccentrically loaded welded joint. Bolted Joints:						
Bolt terminologies, Bolted joint analysis: joints subjected to direct tensile force, subjected to shear,						
Effect of pre-tensioning and integrity of bolted joints. Eccentrically loaded bolted joints. Gaskets						
and their application in flanged joints.						
and their application in flanged joints.						

Main Reading

- 4. Bhandari V. B., Design of Machine Elements, Prentice Hall of India, 2017
- 5. Budynas R. G., Nisbett J. K., Shigley's Mechanical Engineering Design, 2017.

Supplementary Reading

1. Khurmi R. S. Gupta J. K., A Textbook of Machine Design, S. Chand Publisher, 2020.

2. Spotts M. F. Shoup T. F., Hornberger L. E., Design of Machine Elements, Pearson, 2019

Online Link:

https://archive.nptel.ac.in/courses/112/105/112105125/

	PROGRAM OUTCOMES (PO)											PROG	RAM SPE COMES (H	CIFIC PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	-	-	-	-	-	-	-	-	-	3	2	-
CO2	3	3	3	2	-	-	-	-	-	-	-	-	3	3	-

C03	3	3	3	2	-	-	-	-	-	-	-	-	3	3	2
C04	3	3	3	2	-	I	I	-	I	-	-	-	3	3	3
C05	3	3	3	2	-	-	-	-	-	-	-	-	3	2	3
C06	3	3	3	2	-	-	-	-	-	-	-	-	3	3	3

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Dynamics of Machinery	Subject Code: TIU-UME-T313
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- get a basic knowledge of dynamic force analysis and inertia forces in machinery
- be acquainted with different methods of balancing techniques employed in engines
- undesrstand the concepts of discrete and continuous vibrating systems

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the concepts of dynamic force analysis and inertia forces in reciprocating machinery and turning-moment diagrams in engines	K2
CO2	Understand the concept of balancing of different engines	K2
CO3	Understand the basic knowledge of the concepts of gyroscope and its applications in engineering.	K4
CO4	Understand the concepts of different types of vibrations	К3
CO5	Understand the concepts of force and displacement transmissibility, vibration isolation and the use of vibration measuring instruments like seismometer and accelerometer	K3
C06	Understand the concepts of continuous systems and their vibration properties	К3

MODULE 1:	DYNAMIC FORCE ANALYSIS	9 Hours						
Dynamic Force Analysis: D'Alembert's principle, dynamic analysis of single-slider machines,								
velocity and acceleration of a piston, angular velocity and angular acceleration of the connecting								
rod, engine force analysis, turning moment on crankshaft, dynamically equivalent system, turning-								
moment diagra	ams, fluctuation of energy, flywheels, dimensions of flywheel rim, p	unching press						

and shearing machines							
MODULE 2: BALANCING OF RECIPROCATING AND ROTATING MACH	INERY	11 Hours					
Balancing: static balancing, dynamic balancing, transference of a force from	n one pla	ne to another,					
balancing of several masses in different planes, balancing of reciprocating	g masses	s, primary and					
secondary balancing, balancing of inline engines, balancing of V-engines, ba	lancing	of W, V-8, V-12					
engines, balancing of radial engines, method of primary and secondary dir	ect and 1	reverse cranks					
and analytical method, balancing machines							
MODULE 3: GYROSCOPE		7 Hours					
Gyroscope: Concepts of angular velocity and acceleration, gyroscopic torqu	ie, gyros	copic effect on					
aircraft, gyroscopic effect on naval ships, stability of an automobile, sta	ability of	f two-wheeled					
vehicles	-						
MODULE 4: VIBRATIONS		18 Hours					
Vibrations: definitions, types of vibrations, basic features of vibrating system	ns, degre	es of freedom,					
longitudinal vibrations, displacement, velocity and acceleration, inertia effect	ts of the	mass of spring					
in a simple spring-mass system, damped vibrations, logarithmic decrem	ient, forc	ed vibrations,					
forced-damped vibrations, magnification factor, vibration isolation and tra	nsmissib	ility, vibration					
measuring instruments: seismometer and accelerometer, rotating unbalance, support motion,							
transverse vibrations of continuous systems, Dunkerley's method and Rayleigh's method, whirling							
of shafts, torsional vibrations of a single rotor, inertia effect of the mass of shaft on torsional							
vibrations, free torsional vibrations of a two-rotor and three-rotor system	, torsiona	ally equivalent					
shaft							

TOTAL LECTURES

45 Hours

Books:

- 6. Theory of Machines by S.S. Rattan, Tata McGraw Hill Education Pvt Ltd.
- 7. Engineering Mechanics (Dynamics) by J.L. Meriam and L.G. Kraige, John Wiley & Sons Inc.
- 8. Fundamentals of Vibrations by Leonard Meirovitch, Waveland Press

				Р	RO	GR		PROGRAM SPECIFIC OUTCOMES (PSO)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	2	2	-	-	-	-	-	-	-	-	3	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	3	2	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	2	-
C04	3	3	3	2	-	-	-	-	-	-	-	-	3	3	2
C05	3	3	3	3	2	-	-	-	-	-	-	-	3	3	3
C06	3	3	2	2	-	-	-	-	-	-	-	-	3	3	2

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Conventional and Non-conventional Machining Technology	Subject Code: TIU-UME-T315
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4
Prerequisite Course: Material Science (TIU-UME-T217); M T218)	Ianufacturing Processes (TIU-UME-

Course Objective:

Enable the student to:

- understand fundamentals of conventional and unconventional machining
- explore non-traditional machining techniques
- apply machining knowledge for process selection and optimization

Course Outcome:

On completion of the course, the student will be able to:

C01	Understanding of machine tools and its applications	K1
CO2	Recognize and decide different machine tools for product development	K2
CO3	Analyze machining parameters and estimate the machining time.	К3
C04	Correlate the general concept of metal cutting to various machining operations	К3
CO5	Apply the working principles and processing characteristics of non-traditional machining to the production of precision components	K4
C06	Employ advanced micro-manufacturing processes for product development	K4

Course Content:

Module-1:	Basic machine tools: Machining principles, basic idea of machine tool in detail	4 hours
Module-2:	Lathe, milling, drilling, shaping, planning, slotting, and broaching: constructional features and mechanisms, types, specifications and applications/ operations	10 hours
Module-3:	Finishing processes: honing, lapping and super-finishing processes; Machining time: estimation of machining time.	5 hours
Module-4:	Basic of Unconventional machining: Introduction to the principles and applications of unconventional machining processes, Classification of non-traditional Machining Processes, Need for non-traditional Machining	4 hours
Module-5:	Non-traditional Machining Processes: Electro Discharge machining (EDM), Electro Chemical machining (ECM), Abrasive Jet machining (AJM), Water Jet machining (WJM), Ultrasonic Machining (USM), Electron Beam machining (EBM), Laser Beam Machining (LBM): Parameters, responses, mechanism and analysis, effect on material, applications, economics and selection of process; Hybrid processes	22 hours
	TOTAL LECTURES	45 hours

Recommended Books:

Main Reading

- 1. P.N. Rao, Manufacturing Technology Vol 2-Metal Cutting and Machine Tools, Tata McGraw Hill.
- 2. A.B. Chattopadhyay, Machining and Machine Tools, Willey.
- 3. P.K. Mishra, Non-Conventional machining, Narosa Publishing House.

Supplementary Reading

- 1. A. Ghosh and A.K. Mallik, Manufacturing Science, Ellis Horwood.
- 2. H.N. Gupta, R.C. Gupta and A. Mittal, Manufacturing Processes, New Age International (P) Limited.
- 3. G. Boothroyd and W.A. Knight, Fundamentals of Machining and Machine Tools, CRC Press Taylor & Francis Group.

				Р	RO	GR	AM	OU	тсо	OMES ([PO)		PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	2	2	-	-	-	-	-	-	-	-	-	3	2	-		

CO2	3	3	3	2	-	-	-	-	-	-	-	-	3	3	-
CO3	3	3	3	3	2	-	-	-	1	-	-	-	3	3	2
C04	3	3	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	2	3	2	3	-	-	-	1	-	-	-	3	3	3
C06	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Refrigeration and Airconditioning Systems	Subject Code: TIU-UME-T317
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the fundamental principles of refrigeration and air-conditioning, including refrigeration cycles and performance evaluation.
- 2. Analyze the working and efficiency of vapor compression, air refrigeration, and vapor absorption systems using thermodynamic diagrams.
- 3. Evaluate refrigerants based on nomenclature, properties, and environmental impact, ensuring compliance with global standards.
- 4. Design and implement refrigeration and air-conditioning systems by selecting appropriate equipment, control mechanisms, and psychrometric processes for optimal performance.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Define the fundamental concepts of refrigeration and air-conditioning from second law of Thermodynamics, including refrigeration units and principles.	K1
CO2	Explain the working principles and performance analysis of vapor compression and air refrigeration systems (VCRS & ARS) using p-h and T-s diagrams, including COP determination and limitations.	K2
CO3	Analyze vapor absorption refrigeration systems (VARS) based on their working principles, advantages, and limitations	K4
CO4	Classify refrigerants based on nomenclature, properties, environmental impact, and compliance with ODP and GWP regulations.	K2
C05	Analyze major refrigeration equipment, including compressors, condensers,	K4

	evaporators, and expansion devices, and their role in optimizing system										
	performance										
C06	Apply psychrometric charts to psychrometric processes and air-conditioning	V 2									
	for heat load estimation.										

COURSE CONTENT :

MODULE 1:	INTRODUCTION	2 Hours								
Concepts of Re	frigeration and Air-conditioning, Unit of refrigeration									
MODULE 2:	SIMPLE VAPOUR COMPRESSION REFRIGERATION SYSTEM	6 Hours								
Vapour compr	ession cycle on p-h and T-s diagrams, Cycles with sub-cooling and	superheating,								
their effects. Ef	their effects. Effect of changes in evaporator pressure and condenser pressure on the performance									
of a simple VCRS, dry compression and wet compression of refrigerant, actual Vapour Compression										
cycle.										
MODULE 3:	AIR REFRIGERATION SYSTEM (ARS)	3 Hours								
open-air and d	ense-air system, limitations of Bell-Coleman refrigerator, COP determ	ination, actual								
air-refrigeratio	n cycle.									
MODULE 4:	VAPOUR ABSORPTION REFRIGERATION SYSTEM (VARS)	6 Hours								
Advantages of VARS over VCRS, working principle of simple VARS, practical VARS, limitations of										
VARS, maximu	m COP of a VARS, Li- Br-water system and Aqua-ammonia systems.									
MODULE 5:	REFRIGERANTS	3 Hours								
Refrigerants: Nomenclature, Classification, Desirable properties, Environmental regulations, ODP,										
GWP.										
MODULE 6:	EQUIPMENT AND CONTROL	7 Hours								
Major Refrige	ration Equipment – Compressors: Types, reciprocating, rotary	& centrifugal,								
volumetric effi	ciency; Condensers: types used in refrigeration systems; Evaporato	ors; Expansion								
devices: capilla	ry tubes and thermostatic expansion valves.									
MODULE 7:	PSYCHROMETRY	6 Hours								
Basic definitio	ns and principles related to Psychrometry, Psychrometric charts	& their uses.								
Heating, coolir	ng, heating & humidification & cooling & dehumidification proces	ses. Adiabatic								
saturation, By-	pass factor, Sensible Heat Factors. Simple cases of Heat Load estimatio	n.								
MODULE 8:	TYPES OF AIR-CONDITIONING SYSTEMS AND AIR-	6 Hours								
	CONDITIONING EQUIPMENT									
Window air co	nditioners & split air conditioners. Single duct, double duct & V A V sys	tems. Chillers,								
air handling un	its, cooling towers, cooling coils.									
TOTAL LECTU	RES	39 Hours								

Books:

- 1. Refrigeration and Air Conditioning by C.P. Arora, McGraw Hill Education (India) Private Limited.
- 2. Refrigeration and Air Conditioning by R.C. Arora, PHI Learning Pvt. Ltd.
- 3. A Textbook of Refrigeration and Air Conditioning by R.S. Khurmi and J.K. Gupta, S Chand.
- 4. Hand book of heating, ventilation and Air-conditioning, Jan. F. Kreider, CRC press.
- 5. Automotive heating and Air-conditioning, Mike Stubblefield and John H Haynes
- 6. Heating ventilation and air conditioning Jan F. Kreider

|--|

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	I	I	-	-	-	I	I	-	-	-	3	2	-
CO2	3	3	2	2	2	-	-	-	-	-	-	-	3	3	-
CO3	3	3	2	2	I	-	1	1	1	-	-	-	3	3	-
CO4	2	2	I	I	-	3	3	I	I	-	-	-	2	3	-
C05	3	3	2	2	3	-	-	-	-	-	-	-	3	3	2
C06	3	3	3	3	2	-	-	-	-	-	-	-	3	3	2

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.				
Course Title: Heat Transfer Lab	Subject Code: TIU-UME-L307				
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5				

COURSE OBJECTIVE :

Enable the student to:

correlate the experiments related to heat transfer theory

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Analyze the heat transfer from a composite slab	K4
CO2	Understand how to determine the effectiveness and efficiency of a pin fin	K2
CO3	Illustrate to determine the heat transfer coefficient in forced convection	K3
CO4	Gain knowledge as to how to determine the heat transfer coefficient in natural	K2
C04	convection	
C05	Determine different heat exchanger performance parameters	K3
C06	Understand how to determine the Stefan Boltzmann's constant in thermal	K2
CUB	radiation	

MODULE 1:	DETERMINATION OF THERMAL CONDUCTIVITY	3 Hours			
Study of conduction heat transfer and determination of thermal conductivity.					
MODULE 2:	DETERMINATION OF FIN PERFORMANCE	3 Hours			

Study of heat transfer through a fin and determination of fin performance parameters								
MODULE 3:	FORCED CONVECTION ANALYSIS	3 Hours						
Study of force	heat transfer							
coefficient and	Nusselt number							
MODULE 4:	FREE CONVECTION ANALYSIS	3 Hours						
Study of free co	onvective heat transfer and determination and validation of heat trans	fer coefficient						
and Nusselt nu	mber							
MODULE 5: HEAT EXCHANGER ANALYSIS								
Study of variou	is types of heat exchangers, like shell and tube heat exchangers, plat h	eat exchanger,						
tubular heat ex	changers etc. Determination of heat exchanger performance paramete	rs.						
MODULE 6:	3 Hours							
Determination of emissivity of gray surface, determination of Stefan-Boltzmann constant.								
TOTAL LECTU	RES	18 Hours						

		PROGRAM OUTCOMES (PO)												AM SPEO OMES (P	CIFIC SO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	2	2	2	-	-	-	-	-	-	-	3	3	2
CO2	3	3	2	2	2	-	-	-	-	-	-	-	3	3	2
CO3	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3
CO4	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3
C05	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3
C06	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.			
Course Title: Fluid Machinery Lab	Subject Code: TIU-UME-L309			
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5			

COURSE OBJECTIVE:

Enable the student to:

correlate the classical experiments of turbines and pumps related to fluid machines theory

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Apprehend the working of reaction turbine and its basic components	K4			
CO2	Apprehend the working of reaction turbine and its basic components	K2			
CO3	Comprehend the working of different type of pumps	K3			
CO4	Able to calculate the efficiency of the Centrifugal pump and Submersible pump	К 2			
C04	and draw the performance curves				
C05	Able to draw the performance characteristics and efficiencies of Kaplan turbine	V 2			
005	and Francis turbine	KS			
C06	Understand the constructional details of a Pelton turbine in detail	K2			

MODULE 1:	FRANCIS TURBINE	3 Hours				
To draw the characteristic curves of a Francis turbine						
MODULE 2:	KAPLAN TURBINE	3 Hours				

To draw the characteristic curves of a Kaplan turbine									
MODULE 3:	ILE 3: CENTRIFUGAL PUMP								
To draw the characteristic curves of a Centrifugal pump									
MODULE 4: SUBMERSIBLE PUMP									
To draw the characteristic curves of a Submersible pump									
MODULE 5:	3 Hours								
Study experime	ent on the model of the Pelton turbine								
MODULE 6: RECIPROCATING PUMP 3 Ho									
Study experiment on the model of the Reciprocating pump									
TOTAL LECTU	RES	18 Hours							

		PROGRAM OUTCOMES (PO)												RAM SPE COMES (H	CIFIC PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	2	2	I	I	I	I	-	-	-	3	3	2
CO2	3	2	2	2	2	I	I	I	1	-	-	-	3	3	2
CO3	3	2	2	2	2	I	I	I	I	-	-	-	3	3	2
CO4	3	3	3	3	3	I	I	I	1	-	-	-	3	3	3
C05	3	3	3	3	3	I	I	I	1	-	-	-	3	3	3
C06	3	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Department of Mechanical Engineering

Program: B.Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: AutoCAD Lab	Subject Code: TIU-UME-L311
Contact Hours/Week:0-0-3(L-T-P)	Credit : 1.5

COURSE OBJECTIVE:

Enable the student to:

Impart the knowledge of CAD commands for drawing 2D and 3D Machine parts drawings required for various Mechanical engineering applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the basic of Auto-Cad in correlation with Engineering Drawing and Machine Drawing	K2			
CO2	Become familiar with various Auto-Cad Drawing Tools	K1			
CO3	Understand the application of various modified Drawing tools of Auto CAD	K2			
CO4	Apply Auto CAD computational analysis tools to engineering design and create a				
004	complete CAD documentation for an engineering design.	кэ			
C05	Develop simple 3D objects and obtain different views	K6			
C06	Able to apply various Drawing Tools of Auto-Cad for solving complex design	K3			

MODULE 1:	GETTING STARTED WITH AUTOCAD	3 Hours					
Opening and Creating Drawings, Exploring the AutoCAD interface, Zooming and Panning							
MODULE 2:	BASIC DRAWING & EDITING COMMANDS	3 Hours					
Using the Mouse, Keyboard, and Enter Key to work quickly and efficiently in AutoCAD, Lines,							

Circles, Rectan	gles						
MODULE 3:	PROJECTS-CREATING A SIMPLE DRAWING	3 Hours					
Creating Simple Drawings, Using Object Snap Tracking to extrapolate a projected top view, Using							
Modify tools to arrange an office layout							
MODULE 4:	Drawing Precision in AutoCAD	3 Hours					
Polar and Orth	o Tracking, Entering Coordinates and Angles, Object Snaps and Trackir	ıg					
MODULE 5:	MAKING CHANGES IN YOUR DRAWING	3 Hours					
Move, Copy, Ro	tate, Mirror						
MODULE 6:	ORGANIZING YOUR DRAWING WITH LAYERS	3 Hours					
Layer States, Properties by Layer, Layer Tools, Polylines, Arcs, Polygons, Ellipses							
MODULE 7:	ANALYZING MODEL AND OBJECT PROPERTIES	3 Hours					
The Properties Palette, Quick Select, Select Similar, Measure Geometry Tools							
MODULE 8:	ADVANCED EDITING COMMANDS	3 Hours					
Trim and Extend, Fillet and Chamfer, Polyline Edit and Spline, Offset and Explode, Join							
MODULE 9:	3D DRAWINGS	3 Hours					
3D Modeling Concepts in AutoCAD							
MODULE 10:	ТЕХТ	3 Hours					
The Multiline Text Tool, The Single Line Text Tool, Editing Text, Text in Model Space vs. Paper							
Space, The Multileader Tool							
TOTAL LECTURES 3							

- 1. N.D. Bhatt, "Engineering Drawing", Charotar, 2014, ISBN- 978-93-80358-96-3.
- 2. <u>T. Jeyapoovan</u>, "Engineering Drawing and Graphics Using Autocad" Vikas Publishing, 2010, 9788125940005.
- 3. <u>https://www.autodesk.com/in/products/autocad/overview?term=1</u> YEAR&tab=subscription.

	PROGRAM OUTCOMES (PO)									PROGRAM SPECIFIC OUTCOMES (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1	2	-	2	1	-	-	-	-	-	-	3	2	2
CO2	3	I	2	-	3	1	-	I	-	-	-	-	3	2	3
CO3	3	I	2	-	3	I	-	-	-	-	-	-	3	2	3
CO4	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3
C05	3	-	3	-	3	-	-	-	-	-	-	-	3	3	3
C06	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Career Advancement & Skill Development	Subject Code: TIU-UTR-S301
Contact hours/week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Acquire comprehensive knowledge of SAP ERP systems, with a particular emphasis on the Sales and Distribution (SD) and Material Management (MM) modules.
- 2. **Develop a thorough understanding of core business processes** within the SD and MM modules, including order-to-cash, procurement, and inventory management workflows.
- 3. **Gain practical experience in integrating SAP modules**, applying real-world scenarios to optimize business processes and operational efficiency.
- 4. **Prepare for SAP certification** and enhance career prospects by acquiring the expertise necessary for roles in ERP implementation, business process optimization, and management.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Gain expertise in SAP S/4HANA architecture, core business processes, optimization, and preparation for certification.	K5					
C02	Develop proficiency in navigating SAP systems, understanding their interface, and	КЗ					
	enciently accessing key functionanties.						
CO3	Gain a foundational understanding of SAP S/4HANA through hands-on experience						
	with the GBI model for business processes.						
C04	Understand and apply the Sales & Distribution business processes in SAP, including						
	order management, pricing, shipping, and billing.						
C05	Gain expertise in the integrated Materials Management process in SAP, covering	K 4					
procurement, inventory management, and materials planning.							
--	--						

COURSE CONTENT :

MODULE 1: Building Tomorrow's ERP with SAP S/4HANA	6 Hours							
□ The Future of ERP □ Discover the Value of SAP S/4HANA □ SAP S/4HANA: Scope and Intelligent								
Processes 🗆 A Modern User Experience with SAP S/4HANA 🗆 Central Business Con	figuration for							
SAP S/4HANA Cloud								
MODULE 2: Navigation in SAP Systems	6 Hours							
🗆 Log on to the system. 🗆 Initial Screen: Menu Bar, Title Bar, Application Toolbar,	SAP Easy Access							
Menu 🗆 Favourites: Add T-Code, Folder, URL 🗆 Transaction Codes 🗆 User Specifi	c Settings 🗆 Help							
Functions								
MODULE 3: Introduction to S/4HANA using GBI	9 Hours							
🗆 GBI Business Story 🗆 SAP S/4HANA Architecture 🗆 Organizational Structu	re 🗆 Products 🗆							
Business Process								
MODULE 4: Sales & Distribution Business Process	9 Hours							
□ Over view of SD □ Creating Master Data □ Sales order process □ Pre-sales Activ	vities 🗆 Shipping,							
Billing, Credit Management								
MODULE 5: Integrated Materials Management Process	8 Hours							
Over view of Material Management IMM organization structure IC Creating Master Data								
Purchasing Information R Creating Invoice, Goods Receipt, Payment								
TOTAL	38 Hours							

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	I	3	2	3	-	-	-	-	-	-	2	3	3	2	
CO2	2	-	2	-	3	-	-	-	-	-	-	-	3	3	3	
CO3	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3	
CO4	2	-	3	2	3	-	-	-	-	-	-	2	3	3	3	
C05	2	-	3	2	3	-	-	-	-	-	-	2	3	3	3	

SEMESTER 6

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Thermal Systems	Subject Code: TIU-UME-T328
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- Describe the principles of gas and vapor power cycles and their applications.
- Differentiate thermodynamic cycles based on efficiency and performance.
- Assess fuel properties and combustion systems for engine performance.
- Illustrate lubrication, cooling, and combustion chamber design effects.
- Optimize boiler and turbine systems for efficient power generation.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO	Define fundamental thermodynamic concepts, including gas and vapor power cycles,	K1
1	internal combustion engines, and fuel supply systems	N1
CO	Describe the working principles of gas power cycles, internal combustion engines, and	V 2
2	their combustion characteristics	ΓL
CO	Apply thermodynamic laws to analyze gas and vapor power cycles for efficiency	V2
3	improvement.	КЭ
CO	Illustrate the impact of combustion, lubrication, and cooling systems on engine	V2
4	performance.	КЭ
CO	Classify various fuels and fuel supply mechanisms based on their properties and effects	V 2
5	on engine performance	ΓL
CO	Analyze the performance of bailers and turbines based on efficiency and energy lesses	V/
6	Analyze the performance of boners and turbines based on enciency and energy losses.	Κ4

COURSE CONTENT :

MODULE 1:	INTRODUCTION	2 Hours							
Basics of Seco	nd Law of Thermodynamics, Properties of Pure Substance, Recapitu	lation of Heat							
Engines IC Eng	ines and Gas Power Cycles, and Vapour Power Cycle.								
MODULE 2:	GAS POWER CYCLE	6 Hours							
Stirling cycle, H	Stirling cycle, Brayton cycles. Gas turbine cycles with intercooling, reheating and regeneration. Use								
of air tables for	gas power cycle analysis. Application of the Gas Power Cycle								
MODULE 3:	INTERNAL COMBUSTION ENGINES	4 Hours							
Principle of wo	orking, Basic Engine Types, Components of IC Engine, Analysis of air st	tandard cycles							
(Otto, Diesel, D	ual), fuel-air cycles and actual cycle. Availability aspects of cycles.								
MODULE 4:	FUEL AND FUEL SUPPLY SYSTEMS	8 Hours							
Classification of	of IC engine fuels, Desirable characteristics of SI & CI engine fuels, Ra	ting of SI & CI							
engine fuels, A	lternative fuels for SI and CI engine (liquid, gaseous, hydrogen, LPC	G, CNG, Biogas							
etc.), Carburet	ion: Air-fuel ratio requirement, Working principle, Analysis of a simpl	e carburettor,							
Defects of a s	imple carburettor and its remedy. Classification of diesel fuel injec	ction systems,							
Working princ	iple, Engine requirements, Injection pumps and nozzles.								
MODULE 5:	COMBUSTION AND LUBRICATION SYSTEM	8 Hours							
Theories of r	ormal and abnormal combustion in SI & CI engine, parameter	rs influencing							
combustion, pr	evention of abnormal combustion in SI & CI engine. Types of combusti	on chamber &							
principle of co	mbustion chamber design in SI & CI engine Principles of lubrication,	properties of							
lubricating oil,	lubrication systems. Principles of cooling, air & water cooling systems								
MODULE 6:	VAPOUR POWER CYCLES	6 Hours							
Carnot cycle, l	Rankine cycle, Reheat cycle, Regenerative cycles, Effect of operating	g variables on							
Regenerative	cycles, Availability analysis of cycles, Binary vapour cycle, Co-gene	erative cycles,							
Combined Gas	Vapour cycles								
MODULE 7:	COMPONENTS OF VAPOUR POWER CYCLE	10 Hours							
Classification	of Boilers, Fire and water-tube boilers. Mountings and Accessor	ies of boilers							
Auxiliary heat	Auxiliary heating surfaces: super heater, reheater, economizer, air preheater. Losses in boilers.								
Equivalent evaporation. Boiler efficiency. Basics of water treatment and ash handling.									
Classifications of turbines, Nozzles: types, flow through nozzles, nozzle efficiency. Working									
principle of the Impulse and Reaction Turbines, Degree of reaction Principle of turbine governing,									
Different losse	s in turbine, blade erosion. Classification, Elements of condensing plan	t, Power plant							
condensers, Ai	r leakage - effect and removal.								
TOTAL LECTU	RES	44 Hours							

Books:

- 1. Power Plant Engineering by P.K. Nag, McGraw Hill Education (India) Private Limited.
- 2. Internal Combustion Engines by M.L. Mathur and R.P. Sharma, Dhanpat Rai Publications.
- 3. Internal Combustion Engine Fundamental by J.B. Heywood by McGraw-Hill Education.
- 4. Internal Combustion Engines by V. Ganesan, Tata Mcgraw Hill Education Private Limited.
- 5. Fundamentals of Internal Combustion Engines by H.N. Gupta, PHI Learning
- 6. Steam & Gas Turbines and Power Plant Engineering by R. Yadav, Central Publishing House.
- 7. A Textbook of Power Plant Engineering by R.K. Rajput, Laxmi Publications

PF	RO 6	GRA	M (DUT	CO	ME	S (I	PO)				PROGI OUT(RAM SPE COMES (I	CIFIC PSO)
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

C01	3	2	-	-	1	I	-	-	-	-	-	1	2	-	-
CO2	2	2	-	-	2	I	-	-	-	-	-	1	2	-	-
CO3	3	3	-	2	2	I	-	-	-	-	-	2	3	-	-
CO4	2	-	2	-	2	I	-	-	-	-	-	1	2	-	2
CO5	2	-	2	-	2	-	-	-	-	-	-	1	2	-	2
C06	3	2	-	2	3	-	-	-	-	-	-	2	3	-	3

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Design of Machine Elements II	Subject Code: TIU-UME-T320
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. To analyze and design various braking and clutch systems by applying engineering principles related to force, heat generation, and torque transmission.
- 2. To evaluate and select appropriate rolling contact bearings and lubrication methods based on load conditions, speeds, and performance criteria.
- 3. To understand and apply gear design principles for spur, helical, bevel, and worm gears, ensuring strength, durability, and efficient power transmission.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Analyze different types of brakes, understand their working principles, and design various brake systems, including shoe, block, band, and internal expanding shoe brakes, considering braking force, heat generation, and temperature rise.	К3
CO2	Evaluate and design different types of clutches such as plate, cone, multiple-disc, and centrifugal clutches using Uniform Wear and Uniform Pressure theories to determine torque transmission capacity.	К3
CO3	Classify and analyze different rolling contact bearings, determine their static and dynamic load capacities using Stribeck's Equation, and select appropriate bearings from manufacturer catalogs based on variable loads and speeds.	К3
CO4	Understand the principles of hydrodynamic and hydrostatic lubrication, apply Petroff's Equation for friction coefficient estimation, and design hydrodynamic journal bearings using Raimondi and Boyd methods for load-carrying capacity assessment.	К3
C05	Comprehend spur gear terminology, calculate gear forces, and design gear teeth	К3

	for strength against bending and wear using Lewis' Equation, AGMA standards,	
	and Buckingham's Wear Equation.	
	Analyze the working principles and design considerations of helical, bevel, and	
C06	worm gears, determine forces in a gear train, and calculate transmitted torque	КЗ
	and power.	

COURSE CONTENT :

MODULE 1:	Braking Systems Analysis	8 Hours								
Different types	Different types of brakes and their applications. Theory of braking action; Knowledge of the									
design process for short and long shoe brakes, pivotal block brakes, internal expanding shoe										
brakes and band brakes; calculation of temperature rise due to heating.										
MODULE 2:	Clutch Design and Performance	8 Hours								
Different types	of clutches and their applications. Torque transmission capacity, U	niform Wear								
Theory and U	niform Pressure Theory; Design of Plate Clutch, Cone Clutch, Multi	ple Disc and								
Centrifugal clut	ches.									
MODULE 3:	Rolling Contact Bearing	9 Hours								
Rolling Contact	Bearings: Different types of rolling contact and their applications. Cla	ssification of								
bearings, Radia	al and Thrust bearings; Static and Dynamic Load Capacities of bearing	gs; Stribeck's								
Equation, Equi	valent Dynamic Load Capacities, Selection of bearings from catalogue	, designation								
of bearings, Sel	ection of bearings for variable loads and speeds.									
MODULE 4:	Sliding Contact Bearings	8 Hours								
Sliding Contact	Bearings: Different types of lubrication, operating principles of hydro	o-dynamic and								
hydro-static lu	brication; Friction Coefficient for journal bearings -Petroff's Equa	ation; Bearing								
characteristic r	number; Load carrying capacities of a hydro-dynamic bearing, Raimo	ondi and Boyd								
Method, Somm	erfeld's number; Energy loss and temperature rise in a hydro-dy	namic journal								
bearing. Selecti	on of bearings parameters from empirical charts									
MODULE 5:	Gear Systems and Design of Spur Gears	9 Hours								
Gear Terminol	ogy; Forces on a gear tooth, Torque and Power transmitted; Forces in	n a gear train;								
Design of gear	tooth against bending and wear. Lewis' Equation, Lewis Form	Factor, Beam								
Strength, Wear	Strength, Buckingham's Wear Equation, Effective load on gear tooth.	Design of gear								
based on streng	gth. AGMA equations for design of gears.									
MODULE 6:	Advanced Gear Systems and Torque Transmission	6 Hours								
Description an	Description and general Terminology of Helical Gears, Bevel Gears and Worm and Worm									
Gear Forces in	Gear Forces in a gear train, calculation of transmitted torque and power.									
TOTAL LECTU	RES	48 Hours								

Books:

Main Reading

- 1. Bhandari V. B., Design of Machine Elements, Prentice Hall of India, 2017
- 2. Budynas R. G., Nisbett J. K., Shigley's Mechanical Engineering Design, 2017.

Supplementary Reading

- 1. Khurmi R. S. Gupta J. K., A Textbook of Machine Design, S. Chand Publisher, 2020.
- 2. Spotts M. F. Shoup T. F., Hornberger L. E., Design of Machine Elements, Pearson, 2019

Online Link:

https://archive.nptel.ac.in/courses/112/105/112105125/

PROGRAM OUTCOMES (PO) PROGRAM SPE

								OUTCOMES (PSO)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1	-	2	-	-	-	-	-	-	-	-	2	2	-
CO2	3	-	2	-	-	-	-	-	-	-	-	-	2	-	-
CO3	2	-	3	-	-	-	-	-	-	-	-	-	-	2	-
CO4	2	-	3	-	-	-	-	-	-	-	-	-	-	2	-
C05	3	-	2	-	-	-	-	-	-	-	-	-	2	-	-
C06	3	-	2	-	-	-	-	-	-	-	-	-	2	-	-

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Robotics and Automation	Subject Code: TIU-UME-T330
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- get a basic knowledge of robotics and its applications in various domains
- be acquainted with different methods of spatial descriptions and transformations
- understand the concepts of forward and inverse kinematics of manipulators
- understand the different control strategies employed in robotic systems

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Able to get a basic knowledge of Robotics and its applications in various domains.	K2					
CO2	Acquainted with the different methods of spatial descriptions and transformations	КЗ					
CO3	Understand the concepts of forward kinematics in manipulators	K4					
C04	Understand the concepts of reverse kinematics in manipulators	K4					
	Formulate rotational and linear velocities of rigid bodies in manipulators and						
C05	Jacobians in the force domain to derive the Cartesian transformation of velocities						
	and static forces						
C06	Formulate different control strategies employed in robotic systems	K4					

COURSE CONTENT :

MODULE 1: INTRODUCTION	2 Hours										
Introduction: background, description of position and orientation, forward and invest	se kinematics										
of manipulators, velocities, static forces and singularities, robot dynamics, trajectory	generation										
and path planning, position and force control of manipulators.											
MODULE 2: SPATIAL DESCRIPTIONS AND TRANSFORMATIONS	7 Hours										
Spatial Descriptions and Transformations: positions, orientations and frames, chang	ing										
descriptions from frame to frame, translation and rotation operators, mappings involving general											
frames, fixed angles and Euler angles and singularities therein, equivalent axis-angle											
representation.											
MODULE 3: FORWARD KINEMATICS OF MANIPULATORS	9 Hours										
Forward Kinematics of Manipulators: link description, link-connection description, l	ink										
parameters, D- H notation, derivation of link transformation equations for forward k	inematics,										
forward kinematics of some industrial robots. Inverse Kinematics of Manipulators: so	olvability,										
existence of solutions, multiple solutions, closed form solution techniques, geometric	and algebraic										
solution methods.											
	T										
MODULE 4: INVERSE KINEMATICS OF MANIPULATORS	8 Hours										
Inverse kinematics of manipulators: introduction, solvability, existence of solutions,	multiple										
solutions, closed form solution techniques, geometric and algebraic solution method	S										
	0.11										
MODULE 5: JACOBIANS: VELOCITIES AND STATIC FORCES	9 Hours										
Jacobians: Linear and rotational velocities of rigid bodies, velocity propagation from	link to link,										
Jacobians, singularities, static forces in manipulators.											
	10 11										
MUDULE 6: RODOT CONTROL Systems	10 Hours										
KODOT CONTROL Systems: Upen-Loop and Closed-Loop Control, PID Control in Robotics	S, Motion										
Control: Position, velocity, and Force Control, Adaptive and Learning Control for Rol	ots, Stability										
and Performance of KODOTIC Systems.	4 F II**										
IUIAL LEUIUKES	45 HOULS**										

Books:

- 1. Introduction to Robotics (Mechanics and Control), by J.J. Craig, Pearson Educational International.
- 2. Introduction to Robotics (Analysis, Control and Applications) by S.B. Niku, Wiley
- 3. Robotics (Fundamental Concepts and Analysis), by A. Ghosal, Oxford University Press.
- 4. Feedback Control of Dynamic Systems by G.F. Franklin, J.D. Powell and A. Emami-Naeini, Pearson Education

				Р	RO	GR/		PROGRAM SPECIFIC OUTCOMES (PSO)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	-	1	-	-	-	-	-	-	1	2	-	-

CO2	3	2	-	-	2	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	2	-	-	I	-	-	-	1	2	-	-
CO4	3	2	-	-	2	-	-	-	-	-	-	1	2	-	-
C05	3	3	-	2	3	-	-	I	-	-	-	2	3	-	2
C06	2	2	2	-	3	-	-	-	-	-	-	2	3	-	2

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Metrology and Mechanical Measurement	Subject Code: TIU-UME-T324
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE :

- 1. Develop proficiency in measurement techniques: Equip students with the skills to accurately use a wide range of metrology tools and instruments, such as micrometers, calipers, and coordinate measuring machines (CMM), for precise mechanical measurements.
- 2. Understand measurement accuracy and error analysis: Teach students the principles of measurement uncertainty, error analysis, and calibration, ensuring they can evaluate and improve the precision and reliability of measurement systems.
- 3. Apply metrology in industrial quality control: Enable students to apply metrological principles in real-world manufacturing and quality control settings, including the use of measurement standards and techniques to optimize product quality and performance.

COURSE OUTCOME :

C01	To understand the basic concepts of metrology and measurement	K2
CO2	To understand linear and angular measuring instrument for measurement of various components	K2

C03	To understand the usage of various interchangeability of components used in measurement	K4
CO4	To understand basic concept of measuring instruments	K2
C05	To evaluate quality of surface produced using various methods	К3
C06	To understand methods of measurement for various quantities like force, load, torque, power, temperature, displacement, velocity and acceleration	K4

COURSE CONTENT :

MODULE 1:		6 Hours
Definition and	importance of Metrology Measurement; Methods of measurements – o	lirect, indirect,
comparison, su	bstitution, transposition, deflection and null measurement; Errors in	measurement
– absolute, r	elative, parallax, alignment, loading, dynamic and calibration er	ror; Units of
measurements	– SI base and derived units, SI prefixes of units.	
MODULE 2:		7 Hours
Vernier scale; o	construction and use of Vernier Caliper, Vernier height and depth gaug	e, micrometer;
slip gauge. A	ngular Metrology: Constructional features and use of protractor,	Vernier bevel
protractor, ang	le gauges, and sine bar and slip gauges.	
MODULE 3:		7 Hours
(i) Level using	spirit-level; (ii) Flatness using straight edge, interferometry (Newto	on's rings) and
surface plate; I	arallelism, cylindricity and concentricity using dial indicator.	
MODULE 4:		7 Hours
Concept of lim	its, tolerances and fits; Hole basis and shaft basis system of fits; Go a	nd No Go limit
gauges; plug, r	ng, snap, thread, radius and filler gauges.	
MODULE 5:		5 Hours
Working princ	ple and application of (i) dial gauge, (ii) Cook optical comparator, (iii)	back pressure
Bourdon gauge	pneumatic comparator, (iv) optical comparator-profile projector.	
MODULE 6:		13 Hours
. Functional ele	ments of an instrument –sensing, conversion & manipulation, data tra	nsmission and
presentation	element; Characteristics -accuracy, precision, repeatability	r, sensitivity,
reproducibility	r, linearity, threshold, calibration, response, dynamic or measur	rement error;
Transducers –	definition, primary and secondary, active and passive.	
Definition:Terr	ninologies –geometrical surface, effective surface, surface roughne	ess, roughness
(primary textu	re), waviness (secondary texture), form, lay, sampling length; Numer	ical evaluation
of surface roug	ghness: peak-to-valley height (Rmax), Centre line average (CLA, Ra),	average depth
(Rm), smoothn	ess value (G); Principle of operation of a Tally-surf.	
Displacement	by LVDT; force by strain – gauge load cell and piezoelectric load cel	ll; pressure by
Bourdon – tu	be gauge; temperature by liquid-in-glass thermometer, thermoco	ouples, optical
pyrometer; liq	aid velocity by pitot tube; water flow by orifice meter.	
TOTAL LECTU	RES	45 Hours

Books:

Main Reading

1. Measurement systems – Application and Design by E.O. Doebelin and D.N. Manik, 5th ed., Tata McGraw Hill.

- 2. Principles of Engineering Metrology by R. Rajendra, Jaico Pub. House.
- 3. Metrology & Measurement by Bewoor and Kulkarni, TMH.

				Р	RO		PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	I	1	-	-	-	1	-	-	-	3	2	-
CO2	3	3	3	2	-	-	-	-	-	-	-	-	3	3	-
CO3	3	3	3	3	2	1	1	1	-	-	-	-	3	3	2
CO4	3	3	3	2	2	-	-	-	1	-	-	-	3	3	2
C05	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3
C06	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3

Course Articulation Matrix:

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Metal Cutting and CNC Machines	Subject Code: TIU-UME-T326
Contact hours/week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- Understand the fundamental concepts of machining, including tool geometry and mechanics of machining.
- Analyze chip formation, cutting forces, tool wear, and tool life to optimize machining performance.
- Explore tool reference systems and cutting fluid applications for effective machining processes.
- Gain insights into CNC technology, its advantages, limitations, and programming fundamentals.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the fundamental concepts of machining, including manufacturing needs, tool							
	geometry, and mechanics of machining.							
CO2	Analyze the mechanics of chip formation for ductile and brittle materials and	K4						
02	identify different types of chips.							

CO3	Apply the concepts of cutting forces, tool wear, tool life, and cutting fluids to enhance						
005	machining performance.						
CO4	Evaluate the significance of Merchant's Circle Diagram in determining cutting force						
04	components.						
C05	Demonstrate an understanding of CNC technology, including its evolution,	К3					
003	advantages, limitations, and machine control unit.						
C06	Develop basic CNC part programs using different programming techniques for	K6					
000	automated machining.						

COURSE CONTENT :

MODULE 1:		5 Hours						
Manufacturing needs and concept, Mechanics of machining, Concept of rake and clearance angle.								
MODULE 2:		6 Hours						
System descrip	tion of tool geometry, ASA System, Tool reference systems: ORS and N	RS system.						
MODULE 3:		7 Hours						
Mechanics of o	chip formation for ductile and brittle materials, Geometry and char	acteristics of chip						
formation, Buil	d up edge formation, Type of chips							
MODULE 4:		9 Hours						
Cutting force co	omponents and their significances, Merchants circle diagram, Tool wea	ar, Tool life, Types						
of Cutting fluid	s, Tool economics.							
MODULE 5:		12 Hours						
Introduction to	o Computer Numerical Control (CNC), Numerical control, Functions	of a machine tool,						
Concept of numerical control, Advantages of CNC machine tools, Evolution of CNC, Advantages of CNC,								
Limitations of CNC, Features of CNC, The Machine Control Unit (MCU) for CNC, Classification of CNC								
Machine Tools, Fundamentals of CNC programming, Part programming techniques, VNC.								
TOTAL		39 Hours						

Recommended Books:

Main Reading

- 1. E.M. Trent, Theory of metal cutting. Butterworths.
- 2. G. Boothroyd. Fundamentals of metal machining and machine tools. Mc Graw Hill.
- 3. P.N. Rao, Manufacturing Technology Vol 2-Metal Cutting and Machine Tools, Tata McGraw Hill.
- 4. Ghosh and A.K. Mallik, Manufacturing Science, Ellis Horwood.
- 5. B.L. Jones, Computer Numerical Control, John Wiley and Sons.

Supplementary Reading

- 1. P.C. Pandey and H.S. Shan, Modern Machining Processes, McGraw-Hill.
- 2. G.C. Sen and A. Bhattacharya, Principles of Metal Cutting/Principles of Machine Tools, New Central Book Agency.
- 3. Production Technology, HMT Publication, TMH.

DDOCDAM OUTCOMES (DO)	PROGRAM SPECIFIC
PROGRAM OUTCOMES (PO)	OUTCOMES (PSO)

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	-	-	-	-	-	-	-	-	-	-	1	2	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	2	2	-	-	3	-	-	-	-	-	-	-	2	-	-
CO4	3	-	-	2	-	-	-	-	-	-	-	-	-	2	-
C05	-	-	-	-	3	-	-	-	-	-	-	-	2	-	2
C06	-	-	2	-	3	-	-	-	-	-	-	-	2	2	-

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Renewable Energy Sources and Applications	Subject Code: TIU-UME-E302A
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Explain the historical perspective of energy demand and supply, the environmental impact of fossil fuels, and the role of renewable energy in sustainable development.
- 2. Analyze the working principles and applications of solar thermal, photovoltaic, wind, biomass, ocean, and geothermal energy systems.
- 3. Apply feasibility studies for solar heating, wind energy utilization, and biomass-based rural electrification.
- 4. Compare different renewable energy technologies based on efficiency, advantages, and limitations for practical implementation.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Identify the historical trends in energy consumption, the impact of fossil fuels, and the importance of renewable energy for sustainable development.	K1
CO2	Summarize the principles, advantages, and limitations of solar thermal and photovoltaic systems for power generation and heating applications.	K2

CO3	Utilize the concepts of wind energy conversion, including turbine types, site selection, and efficiency considerations, to assess wind power potential.	К3
C04	Examine biomass energy systems, including biogas plants and gasifiers, for rural electrification and industrial co-generation	K4
C05	Differentiate between various ocean energy technologies, such as tidal, wave, and OTEC, based on their working principles and feasibility.	K4
C06	Demonstrate geothermal energy applications, including direct-use and power generation, with case studies of Indian geothermal sites	К2

COURSE CONTENT :

MODULE 1: INTRODUCTION	2 Hours								
Energy demand growth and supply: Historical Perspectives; Fossil fuels: Consu	umption and								
Reserve; Environmental Impacts of Burning of Fossil fuels; Sustainable Development and Role of									
Renewable Energy.									
MODULE 2: BASICS OF SOLAR ENERGY	3 Hours								
Solar geometry; Primary and Secondary Solar energy and Utilization of Solar Energy. C	Characteristic								
advantages and disadvantages. Low temperature applications: solar water heating, space-heating,									
drying, Feasibility of solar space heating for residential buildings, Feasibility of s	solar heating								
systems in rural areas									
MODULE 3: SOLAR THERMAL ELECTRICITY GENERATION	4 Hours								
Solar concentrators and tracking; Dish and Parabolic trough concentrating generat	ting systems,								
Central tower solar thermal power plants; Solar Ponds, Improvement in solar concen	ntrators using								
tracking systems									
MODULE 4: SOLAR PHOTOVOLTAIC SYSTEMS	7 Hours								
Basic principle of power generation in a PV cell; Band gap and efficiency of PV cells; M	lanufacturing								
methods of mono- and poly-crystalline cells, Amorphous silicon thin film cells, Singl	gle and multi-								
junction cells; Application of PV; Brief outline of solar, PV stand-alone system design;	; Storage and								
Balance of system, Modern advancement of Solar Photovoltaic Systems									
MODULE 5: WIND ENERGY SYSTEMS	7 Hours								
Types of turbines, Coefficient of Power, Betz limit, Wind electric generators, Power	r curve; wind								
characteristics and site selection; Wind farms for bulk power supply to grid; Poter	ntial of wind								
electricity generation in India and its current growth rate, Application of Low Wind an	nd High Wind								
Speed Turbines									
MODULE 6: BIOMASS ENERGY	6 Hours								
Biomass: Sources and Characteristics; Wet biogas plants; Biomass gasifiers: Class	sification and								
Operating characteristics; Updraft and Downdraft gasifiers; Gasifier based electricit	ty generating								
systems; Maintenance of gasifiers, Biomass gasifiers for rural electrification, bioma	ass-based co-								
generation in industries									
MODULE 7: OCEAN ENERGY	5 Hours								
Tidal power plants: single basin and two basis plants, Variation in generation level; Oc	cean Thermal								
Electricity Conversion (OTEC); Electricity generation from waves: Shoreline and Floating wave									
systems, Small-scale wave energy converters									
MODULE 8: GEOTHERMAL ENERGY	5 Hours								
Geothermal sites in India; High temperature and Low temperature sites; Conversion technologies-									
Steam and Binary systems; Geothermal power plants, Case study on direct-use geothermal									
applications (district heating, greenhouse farming)									
TOTAL LECTURES	39 Hours								

1. Renewable Energy Sources and Emerging Technologies D.P Kothari, K.C.Singal, Rakesh Ranjan. PHI Publication.

2. Non-Convectional Resources G.S. Sawhney; PHI Publication.

3. Non-Conventional Energy Sources by G.D. Rai, Khanna Publishers, Delhi.

4. Renewable Energy engineering and Technology: Principles and Practice, V.V.N. Kishore, TERI Press.

5. Renewable Energy Resources, Twidell J. and Weir T., Taylor & Francis

6. Renewable energy, Godfrey Boyle, Oxford Press.

Course Articulation Matrix:

				Р	RO	GR/	PROG	RAM SPE COMES (I	CIFIC PSO)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	-	-	-	2	3	2	-	-	-	2	2	-	2
CO2	3	2	-	-	2	I	3	-	-	-	-	1	3	-	2
CO3	3	2	-	-	2	1	3	-	-	-	-	2	3	-	2
CO4	2	2	-	-	2	2	2	-	-	-	-	2	3	-	2
C05	2	2	-	-	1	-	3	-	-	-	-	1	2	-	2
C06	2	-	-	-	1	-	2	-	-	-	-	1	2	-	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Metrology and Mechanical Measurement Lab	Subject Code: TIU-UME-L324
Contact hours/week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE:

- Understand and Apply Precision Measuring Instruments: Equip students with the knowledge and skills to effectively use and calibrate precision measuring instruments commonly used in metrology labs, such as slip gauges, dial gauges, and toolmakers' microscopes.
- Develop Practical Skills in Dimensional Measurements: Enable students to accurately build slip gauges for given dimensions and apply their understanding of calibration techniques to achieve precise measurements.
- Learn Thread Parameters Measurement Techniques: Provide students with the ability to measure thread parameters using tools such as the Tool Makers Microscope and floating carriage micrometer, understanding their application in industrial settings.
- Master Calibration Methods: Develop students' proficiency in calibrating instruments like dial gauges and sine bars to ensure accurate measurement results in various engineering applications.

- Enhance Gear and Surface Measurement Techniques: Train students to measure gear tooth thickness using a gear tooth Vernier and assess surface roughness, focusing on the importance of these measurements in quality control.
- Gain Expertise in Advanced Measurement Tools: Familiarize students with the use of modern metrology tools such as Coordinate Measuring Machines (CMM) and dial bore indicators to measure complex dimensions like bores and angles, fostering precision in engineering practices.

COURSE OUTCOME:

C01	Apply the knowledge of metrology to maintain quality of product for the safety of Environment and society.	K2
CO2	Determine the quality of product using modern metrology tools	K3
CO3	Design a measuring equipment to produce high accuracy product	K3, K4
CO4	Calibrate various measuring equipment to maintain standards	K4
CO5	Investigate the problem in quality control and give solution with the engineering knowledge	К3

COURSE CONTENT:

MODULE 1:		3 Hours								
Precision measuri	ng instruments used in metrology lab – A Study									
MODULE 2:		3 Hours								
To build up the slip gauge for given dimension- A Study										
MODULE 3:		3 Hours								
Thread parameter	rs measurement using Tool Makers Microscope									
MODULE 4:		3 Hours								
Calibration of dial	gauge									
MODULE 5:		3 Hours								
Determination of	taper angle by sine bar method									
MODULE 6:		3Hours								
Determination of	gear tooth thickness using gear tooth Vernier									
MODULE 7:		3Hours								
Measurement of t	hread parameters using floating carriage micrometer									
MODULE 8:		3Hours								
Measurement of v	arious dimensions using Coordinate Measuring Machine									
MODULE 9:		3Hours								
Measurement of s	urface roughness									
MODULE 10:		3Hours								
Measurement of b	ores using dial bore indicator and telescopic gauge									
TOTAL LECTURE	S	30 Hours								

Books:

Main Reading

1. Experimental Methods for Engineers by J.P. Holman, McGraw Hill Education (India) Private Limited.

2. Instrumentation, Measurement and Analysis by B.C. Nakra and K.K. Chaudhry, McGraw

Hill Education (India) Private Limited.

				Р	RO	PROG	RAM SPE COMES (I	CIFIC PSO)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	-	2	2	2	2	-	-	-	1	2	-	2
CO2	2	2	I	-	3	-	-	-	-	-	-	1	3	-	-
CO3	3	2	2	-	3	-	-	-	-	-	-	1	3	-	2
CO4	2	-	-	-	3	-	-	-	-	-	-	2	2	-	-
C05	3	3	-	2	2	-	-	-	-	-	-	2	3	-	2

Course Articulation Matrix:

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Modelling and Simulation Using SolidWorks	Subject Code: TIU-UME-L310
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. Develop 3D Modeling and Design Skills by creating and modify 3D models using SolidWorks by understanding fundamental concepts such as sketches, dimensions, relations, features, and assemblies.
- 2. Assemble multiple parts using various mating techniques and generate detailed technical drawings with annotations, dimensions, and bill of materials for manufacturing purposes.
- 3. Implement advanced modeling techniques such as loft, sweep, shell, fillets, patterns, and mirroring, as well as perform simulations for stress analysis, motion studies, and rendering.

4. Evaluate design performance through engineering analysis, compare theoretical and actual design outputs, and utilize SolidWorks tools for model optimization and automation.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explore 3D design principles, SolidWorks interface, and sketching techniques for parametric modeling.	К2
CO2	Design 3D components using extrusion, lofting, sweeping, filleting, and patterning to meet industry standards.	К3
CO3	Optimize mechanical assemblies by applying mates, detecting interference, and generating exploded views.	К4
CO4	Evaluate engineering drawings with precise dimensioning, annotations, section views, and assembly documentation.	К5
CO5	Simulate mechanical designs using parametric modeling, automated updates, and SolidWorks analysis tools.	К6
C06	Implement SolidWorks tools for feature recognition, CAD data management, and design optimization.	К3

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO SOLID WORKS – FUNDAMENTALS	3 Hours									
Concepts on 3D de	esign and components, Terminology; User interface; Design Proces	s and Method,									
Sketches - Origin, Planes, Dimensions and Relations; Features; Assemblies; Drawings; Model											
Editing											
MODULE 2: PART DESIGN											
Overview; Design	Approach, create the base feature with an extrude, add an extrude	le to the base,									
Cut- Extrude featu	are to remove material; Loft, Sweep, Shell, Fillet and Chamfer; Mi	rror in sketch									
and Feature; Gene	rate a linear pattern and circular pattern; Dimensioning using sma	rt dimensions;									
Insert Planes and A	Axes, insert helix										
MODULE 3:	ASSEMBLIES	6 Hours									
Assembly definition	on; Prepare an assembly – Inserting Parts; Mates – Standard Ma	tes, Advanced									
Mates and Mecha	anical Mates; Load an assembly; Examine the assembly – Hi	de and Show									
components, Explo	ode the assembly, detect interference between components										
MODULE 4:	DRAWINGS	6 Hours									
Drawing documer	nts - Drawing templates, drawing sheets, sheet formats, drawing	ng views; Part									
Drawing Sheet - St	candard views, View display and alignment, Dimensions and Annot	ations, Section									
View; Assembly D	rawing Sheet – Explode lines, Derived views, Notes and other anno	tations, Bill of									
Materials, Balloon	s and Stacked Balloons										
MODULE 5:	ENGINEERING TASKS	3 Hours									
Building multiple	configurations of parts; Updating models automatically; Importing	and exporting									
features – Featur	features - Feature recognition; Solid works Simulation - Stress analysis; Solid works motion										
simulation; Rende	ring of parts and assemblies										
TOTAL LECTURE	S	24 Hours**									

Books:

1. Solidworks 2021 Reference Guide by David C. Planchard

				Р	RO	PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	I	-	I	3	I	-	-	-	I	-	-	2	-	-
CO2	-	I	3	I	3	I	-	-	-	I	-	-	2	-	-
CO3	-	I	3	2	I	I	-	-	-	I	-	-	-	2	2
CO4	2	I	-	I	2	I	-	-	-	I	-	-	2	-	-
CO5	2	-	-	3	-	-	-	-	-	-	-	-	-	2	2
C06	2	-	-	-	2	-	-	-	-	-	-	-	2	-	2

Course Articulation Matrix:

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Career Advancement and Skill Development	Subject Code: TIU-CASD-UTR-S302A
Contact hours/week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- **Develop proficiency in SAP Production Planning (PP):** Gain expertise in managing production processes, including capacity planning, material requirements planning, and production scheduling within SAP PP.
- Master SAP Financial Accounting and Controlling (FI/CO) modules: Acquire a comprehensive understanding of financial transactions, reporting, cost tracking, and internal controls within SAP's FI and CO modules.

- **Understand SAP Human Capital Management (HCM) functionalities:** Learn to manage employee data, payroll, recruitment, and performance evaluations effectively using SAP HCM.
- Develop proficiency in data modeling, visualization, and analytics to transform business data into actionable insights, enhancing data-driven decision-making.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Gain expertise in SAP architecture, core business processes, optimization, and preparation for certification.	К5							
CO2	Develop proficiency in navigating SAP systems, understanding their interface, and efficiently accessing key functionalities.	К З							
CO3	Gain a foundational understanding of SAP through hands-on experience with the								
005	GBI model for business processes								
CO4	Understand and apply the Sales & Distribution business processes in SAP,	V 2							
CO3 Gain a foundational understanding of SAP through hands-on experience with GBI model for business processes CO4 Understand and apply the Sales & Distribution business processes in including order management, pricing, shipping, and billing. Gain expertise in the integrated Materials Management process in SAP, covered with the sales of the sale of the	КЭ								
COF	Gain expertise in the integrated Materials Management process in SAP, covering	IZ A							
05	procurement, inventory management, and materials planning.								

COURSE CONTENT :

MODULE 1:		10 Hours							
	Production Planning and								
	Exaction								
• Under	stand a manufacturing process cycle								
 PP org 	ganization structure								
• Maste	r Data								
• Bill of	Material								
• Mater	ial Requirement Planning								
• Multi-	Level Scheduling								
• Produ	ction Order								
• Mater	ial Withdraw, Conformation, Goods Receipt, Order								
Settle	ment								
MODULE 2:		10 Hours							
	Financial Accounting and								
	Controlling								
 Overvie 	ew of SAP FICO								
 FICO or 	ganization structure								
• GL Con	figuration & Operation								
• Create	Vendor Master Data								
Cost ce	nter accounting								

MODULE 3:	Human Capital Management	10 Hours
Overvie		
 Organiz 		
 Personr 	nel Administration	
• Recruit	ment	
Perform	nance Management	
Personr	nel Controlling	
MODULE 4:	SAP Analytics Cloud	9 Hours
• Introdu	ction to SAP Analytics Cloud	
Overvie	w of connections and its type	
 Live dat 	a with CORS and Import data connection	
Creating	g Data modeling and Modeler navigation	
• Creating	g storying and data exploration	
AP Anal	ytics Cloud Analytics Designer and Microsoft Office Integration	
TOTAL		39 Hours

]	PRO	PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	-	-	-	-	-	-	1	-	-	-	3	-	-	2
CO2	-	-	-	-	2	-	-	1	-	-	-	2	-	-	2
CO3	-	-	-	2	2	-	-	1	-	-	-	-	-	-	3
C04	-	-	-	2	-	-	-	-	-	-	-	2	-	-	3
C05	-	-	-	3	-	-	-	-	-	-	-	2	-	-	3

SEMESTER 7

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering

Year, Semester: 4th Yr., 7th Sem.

Course Title: Operations Research and Industrial Management	Subject Code: TIU-UME-T413
Contact hours/week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- Introduce fundamental concepts and techniques of Operations Research for decision-making in complex systems.
- Develop problem-solving skills using Linear Programming, Network Flow Models, and Queuing Theory for optimization.
- Familiarize students with Industrial Management principles, including forecasting, inventory control, and production planning.
- Enhance understanding of work study, plant layout, and quality management techniques for operational efficiency.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand and apply fundamental concepts of Linear Programming, Transportation, and Assignment Problems to optimize decision-making in operations research .	К3
CO2	Analyze and evaluate network flow models like CPM, PERT, and GERT for effective project planning and scheduling.	K4,K5
CO3	Demonstrate proficiency in Queuing Theory, Game Theory, Markov Chains, and Monte Carlo Simulation for decision analysis in uncertain environments.	K3,K4
CO4	Implement forecasting techniques and inventory management models such as ABC Analysis, EOQ, and MRP to improve production planning .	K3,K5
C05	Examine and optimize work-study methods, including time study, motion study, and method study, to enhance productivity and efficiency.	K4,K6
C06	Assess and design effective plant layouts, Total Quality Management (TQM) strategies, and Value Analysis for operational excellence.	K5,K6

COURSE CONTENT :

MODULE 1:	Linear programming 12 Hours									
Linear programming- graphical method, simplex method, dual simplex method; Transportation										
Problems: Nor	th West Corner Rule, Vogel's Approximation Method, MODI Method	d; Assignment								
problems: Hun	gerian Method, Travelling Salesman Problem.									
MODULE 2:	Net Work Flow Model	6 Hours								
Net Work Flor	Net Work Flow Model: Critical Path Method (CPM), Project Evaluation and Review Technique									
(PERT), Graphi	ical Evaluation and Review Technique (GERT).									
MODULE 3:	MODULE 3: Queuing theory 6 Hours									
Queuing theory	Queuing theory: Game theory, Markov chain, Monte Carlo Simulation.									
MODULE 4:Forecasting techniques and models10 Hours										
Forecasting techniques and models; Inventory control: ABC Analysis, Economic Order Quantity										
(EOQ) models	Materials Requirement Planning and ERP; assembly line balancing	g; Break Even								
Analysis; Lean	and JIT Manufacturing System.									

MODULE 5:	Work Study	4 Hours
Work Study – V	Vork measurement, time study, motion study, method study.	
MODULE 6:	Total Quality Management	4 Hours
Plant location a	and plant layout (various types); TQM; Value Analysis	
TOTAL		42 Hours

Recommended Books: Main Reading

- 1. Production Systems: Planning, Analysis and Control by J.L.Riggs, 3rd ed., Wiley.
- 2. Productions and Operations Management by A.Muhlemann, J.Oakland and K. Lockyer, Macmillan.
- 3. Operation Research (Second Edition) by A.M. Natarajan, P. Balasubramanie, A. Tamilarasi
- 4. Operations Research by J.K.Sharma, Macmillan.
- 5. Operations Research, Vijayakumar, SciTech
- 6. Production, Planning and Inventory Control by S.L.Narasimhan, D.W.McLeavey, J.Billington, Prentice Hall.
- 7. Production Systems: Planning, Analysis and Control by J.L. Riggs, 3rd ed., Wiley.
- 8. Industrial Engineering and Management by O.P. Khanna, Dhanpat Rai Publications

Supplementary Reading

- 1. Production and Operations Management by S.N. Chary. McGraw Hill Publ, 5th Edition.
- 2. Operations and Supply Management (SIE) by Chase. McGraw Hill Publishers, 12/e.
- 3. Production and Operations Management by Saxena. McGraw Hill Publishers, 2/e.

Course Articulation Matrix:

		PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	3	-	-	2	-	-	-	-	-	-	1	3	-	-	
CO2	3	2	-	2	2	-	-	-	-	-	-	2	3	-	-	
CO3	3	3	1	-	2	-	-	1	-	-	-	2	3	-	-	
CO4	2	2	-	-	3	-	-	-	-	-	-	2	3	-	-	
CO5	2	2	-	1	3	-	-	-	-	-	-	2	3	-	2	
C06	2	-	3	-	2	-	-	-	-	-	-	2	3	-	2	

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Mechatronics and Industrial Control	Subject Code: TIU-UME-T415
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Course Objectives for Industrial Control and Mechatronics:

- Understand fundamental concepts of industrial control systems and mechatronics.
- Analyze and design control systems for industrial automation.
- Integrate mechanical, electrical, and computing systems in mechatronics applications.
- Explore the working principles and applications of **sensors** and **actuators** in industrial automation.
- Apply **PLCs, sensors, actuators, and robotics** in automated systems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the fundamentals of Industrial Automation the necessity of each blocks such as (Sensing element, signal conditioning element and signal processing element) and its role in the overall instrumentation architecture.	К2
CO2	The student should understand and analyze working principle of each sensors and conditioning circuits like electrical bridges, amplifiers, filters and also signal processing circuits like A/D, D/A, quantization and Sample / Hold circuits .	К3
CO3	Understand and analyze closed loop control performance for PID algorithms (P, PI and PID). Understand and analyze Cascade, feed-forward, feed-back-feed-forward, Ratio, Selective, Split range and Inferential Control strategies for enhanced process control beyond conventional single-loop PID controllers.	К2
CO4	Understand and analyze the basics of PLC programming. Understand the different parameters of PLC.	КЗ
CO5	Understand and analyze real time control system	К3

COURSE CONTENT :

MODULE 1:	Introduction	6 Hours								
Mechatronics:	Its definition and advantages. Mechatronic systems: mechanic	cal, electrical,								
electronic and	electronic and computer system. Measurement systems: sensor, signal conditioning and display									
systems. Control systems: Open loop and close loop systems: advantages and disadvantages of										
open loop and closed loop systems.										
MODULE 2:	Sensors and Transducer	10 Hours								

Static and Dynamic characteristics, calibration. Step and frequency response of first and second order elements and loading effect and dynamic compensation. Potentiometer, Strain gauge (Poisson's Equation, gauge factor, Mechanical Installation of strain Gauge and Types, of strain Gauge), RTD, Thermistor. Capacitor sensor, Variable reluctance sensor, Elastic sensing element (Bourdon tube, bellows and Diaphragms for pressure sensing). Deflection Bridges (Design of resistive and reactive bridges, push pull configuration for improvement of linearity and sensitivity. Operational Amplifiers (ideal and non-ideal performance, Instrumentation amplifier, Architecture of Closed loop 4-20 milliamp

MODULE 3:Controller Principles:9 HoursControl systemparameters: error, range, percentage controller output, control lag, Dead time,
Controller modes: Discontinues control mode (Two Position mode, Three position mode, floating
mode), Continuous control mode: (Proportional, Integral and Derivative Control Mode), Composite
Control Mode: (PI, PD and PID Control system), Control Structure: (Feed-forward, cascade and
Ratio control).

MODULE 4:	Actuators: Actuation systems: Pneumatic Actuation	8 Hours								
Pneumatic Actuation: (Pneumatic Signals, amplification, Flapper/Nozzle systems, I/P convertor,										
P/I convertor,	P/I convertor, Electromechanical actuators, Control valves (Spring and Diaphragm valve),									
Pneumatic actuator, fail safe operation, Spring-less diaphragm Actuator, Hydraulic actuator,										
Electrical actuator: Solenoid, DC Motor, AC motor, switching devices (silicon controlled rectifiers,										
gate turn off Th	yristor									
MODULEE	Drogrammable Logic Controllors	0 Hours								

MODULE 5: Programmable Logic Controllers:	8 Hours
PLC input and output, Operation of PLC, Difference between PLC and hardwire	ed device, PLC
architecture and concept of Ladder logic, Basic programming of PLC with simple a	pplication. PLC
Timer and counter.Introdusction to real time control system .	
	44 11

TOTAL LECTURES

41 Hours

		PROGRAM OUTCOMES (PO)											PROG OUT	RAM SPE COMES (1	ECIFIC PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	-	2	-	I	-	-	-	-	1	2	-	-
CO2	3	2	-	1	3	-	-	-	-	-	-	1	3	-	-
CO3	3	3	I	2	2	-	1	-	-	-	-	2	3	-	2
CO4	2	-	2	-	3	-	-	-	-	-	-	2	3	-	-
CO5	2	-	3	-	2	-	-	-	-	-	-	2	3	-	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Basics of Steam Power Plant	Subject Code: TIU-UME-T419
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the principles of Second Law of Thermodynamics, properties of pure substances, and various gas and vapor power cycles, including their applications in power generation..
- 2. Analyze the working of boilers, steam turbines, and condensers, including their classifications, components, efficiencies, and operational challenges in power plants.
- 3. Evaluate the performance of steam power plants, considering thermodynamic cycles, economic factors, and environmental impacts, including load sharing and cost analysis.
- 4. Design and optimize power plant systems, incorporating concepts such as reheat, regeneration, combined cycles, and auxiliary equipment for improved efficiency and sustainability.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Illustrate the working of a gas turbine power plant and a vapor power cycle in correlation with the Second Law of Thermodynamics and the properties of a pure substance.	K1
CO2	Determine the efficiency and output of a modern Rankine cycle steam power plant from given data, incorporating superheat, reheat, regeneration, and irreversibilities.	K3
CO3	Classify different types of coupled vapor cycles and enumerate the advantages of a combined cycle power plant.	K2
C04	Understand the classifications of boilers, their working procedures, and associated mountings and accessories.	K2
C05	Analyze various types of steam turbines, including their principles of operation, components, and applications, along with condensers and feed water pumps.	K4
C06	Apply economic factors in the selection of a steam power plant, considering cost-effectiveness and operational efficiency.	K3

COURSE CONTENT :

MODULE 1:	INTRODUCTION	6 Hours						
Basics of Second Law of Thermodynamics, Properties of Pure Substance, Gas Power Cycles: Stirling,								
Brayton cycles. Gas turbine cycles with intercooling, reheating and regeneration. Use of air tables								
for gas power cycle analysis.								
MODULE 2:	ODULE 2: VAPOUR POWER CYCLES 7 Hours							
Carnot cycle, Rankine cycle, Reheat cycle, Regenerative cycles, Effect of operating variables on								
Regenerative cycles, Availability analysis of cycles, Binary vapour cycle, Co-generative cycles,								

MODULE 3:BOILERS10 HoursClassification of Boilers, Fire and water-tube boilers. Mountings and Accessories of boilers. Coal analysis, Combustion calculations using both mass and energy balance, heating values. Types of coal feeding and firing methods. Introduction to power station boiler. Circulation theory and processes. Draft: Definition, classifications and calculations. Auxiliary heating surfaces: super heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation. Boiler							
Classification of Boilers, Fire and water-tube boilers. Mountings and Accessories of boilers. Coal analysis, Combustion calculations using both mass and energy balance, heating values. Types of coal feeding and firing methods. Introduction to power station boiler. Circulation theory and processes. Draft: Definition, classifications and calculations. Auxiliary heating surfaces: super heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation, Boiler							
analysis, Combustion calculations using both mass and energy balance, heating values. Types of coal feeding and firing methods. Introduction to power station boiler. Circulation theory and processes. Draft: Definition, classifications and calculations. Auxiliary heating surfaces: super heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation, Boiler							
coal feeding and firing methods. Introduction to power station boiler. Circulation theory and processes. Draft: Definition, classifications and calculations. Auxiliary heating surfaces: super heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation, Boiler							
processes. Draft: Definition, classifications and calculations. Auxiliary heating surfaces: super heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation, Boiler							
heater, reheater, economizer, air preheater, Losses in boilers. Equivalent evaporation, Boiler							
efficiency. Basics of water treatment and ash handling.							
MODULE 4:STEAM TURBINE8 Hours							
Classifications of turbines, Nozzles: types, flow through nozzles, nozzle efficiency. Impulse turbine:							
Flow through impulse blading, velocity diagram, work done, Blade efficiency. Multistaging of							
turbines: pressure compounding and velocity compounding. Impulse-Reaction turbine: Flow							
through impulse-reaction blading, velocity diagram, Degree of reaction, Parsons Turbine, Principle							
of turbine governing, Different losses in turbine, blade erosion.							
MODULE 5: CONDENSERS 4 Hours							
Classification, Elements of condensing plant, Power plant condensers, Air leakage - effect and							
removal							
MODULE 6:POWER PLANT ECONOMICS4 Hours							
Load curve, load factor, utilization factor etc. Fixed and variable operating cost, Principle of load							
sharing.							
TOTAL LECTURES 39 Hours							

Books:

1. Power Plant Engineering by P.K. Nag, McGraw Hill Education (India) Private Limited.

2. Power Plant Technology by M.M. El-Wakil, McGraw Hill Education (India) Private Limited.

3. Power Plant Engineering by Black & Veatch, CBS Publisher.

4.Steam & Gas Turbines and Power Plant Engineering by R. Yadav, Central Publishing House.

5. A Textbook of Power Plant Engineering by R.K. Rajput, Laxmi Publications.

				Р	RO	PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	I	-	2	-	2	I	-	I	-	1	2	-	2
CO2	3	3	I	2	2	-	I	I	-	I	-	2	3	-	-
CO3	2	2	I	-	1	-	2	I	-	-	-	1	2	-	2
CO4	2	I	2	-	2	-	I	I	-	I	-	1	2	-	-
CO5	2	2	-	-	2	-	-	-	-	-	-	1	2	-	2
C06	2	-	2	-	1	-	-	-	-	-	2	2	2	-	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Computer Aided Manufacturing	Subject Code: TIU-UME-E417
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand and Apply CAM Techniques: Students will gain an understanding of computeraided manufacturing processes, including the use of CAD/CAM software, and will be able to apply these techniques to optimize production processes and improve manufacturing efficiency.
- 2. Design and Simulate Manufacturing Systems: Students will develop the ability to design and simulate manufacturing systems, such as CNC machines, automated assembly lines, and robotics, using industry-standard CAM software tools.
- 3. Analyze and Troubleshoot CAM Systems: Students will be able to analyze the performance of CAM systems, identify potential problems, and apply troubleshooting techniques to ensure smooth and effective manufacturing operations.

Course Outcome:

C01	Apply knowledge about various methods of communication in CIM and its importance for decision making	K2
CO2	Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA and CFD	K2
CO3	Apply geometric transformations on the created models and solve numerical problems on transformation	К3
CO4	Understand the use of computer in manufacturing, automation and robotics	K2
CO5	Learn the working of NC, CNC and DNC machine and use of CAPP in manufacturing environment.	К3
C06	Design flexible manufacturing cell after carrying out group technology study and finally able to create FMS.	K4

Course Content:

MODULE 1:	12 Hours						
Concept of Computer Integrated Manufacturing (CIM), Basic components of CI	M, distributed						
database system, distributed communication system, computer networks for manufacturing, future							
automated factory, social and economic factors.							

MODULE 2:	8 Hours									
Computer Aided Design (CAD): CAD hardware and software, product modelling, automatic										
drafting, engineering analysis, FEM design review and evaluation, Group Technology	Centre.									
MODULE 3:	19 Hours									
Computer Aided Manufacturing (CAM): Computer assisted NC part programm	ing, Computer									
assisted robot programming, computer aided process planning (CAPP), computer	aided material									
requirement planning and MRP, computer aided production scheduling, computer ai	ided inspection									
planning, computer aided inventory planning, flexible manufacturing system (FM	IS), concept of									
flexible manufacturing, Integrating NC machines, robots, AGVs, and other NC equipm	nent, Computer									
aided quality control, business functions, computer aided forecasting. Management	nt Information									
Systems (MIS), Various CIM systems - examples.										
TOTAL	39 Hours									

Recommended Books:

Main Reading

- 1. CAD/CAM: Theory and Practice by I. Zeid and R. Sivasubramanian, McGraw Hill Education (India) Private Limited.
- 2. CAD/CAM: Principles and Applications by P.N. Rao, McGraw Hill Education (India) Private Limited.

Supplementary Reading

- 1. Principles of Computer Graphics by Donald Hearn and M. Pauline Baker. Prentice Hall, Inc.
- 3. Geometry for Computer Graphics and CAD by Duncan Marsh. Applied. Second Edition Springer.
- 4. Automation, Production systems and Computer Integrated Manufacturing Systems by Mikell P. Groover. PHI Publishers.
- 5. Computer Aided Design and Manufacturing by K. Lalit Narayan, K. Mallikarjuna Rao and MMM Sarcar. PHI Publishers.
- 6. Computer aided Manufacturing by Chang, T. C., Wysk, R. A. and Wang, H. P. Prentice Hall.
- 7. Systems Approach to Computer Integrated Design and Manufacturing by Nanua Singh. John Wiley and Sons Ltd.

				Р	RO	GR/	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	1	I	2	I	I	I	-	-	-	1	3	-	-
CO2	2	I	1	I	3	I	I	I	-	-	-	1	2	-	-
CO3	3	2	1	I	3	I	I	I	-	-	-	1	3	-	-
CO4	2	2	-	1	2	-	-	-	-	-	-	1	3	-	-
CO5	2	-	2	-	3	-	-	-	-	-	-	1	3	-	2
C06	2	I	2	I	2	I	I	I	-	-	-	2	3	-	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Mechanical Engineering

Program: B. Tech. in Mechanical EngineeringYear, Semester: 4th Yr., 7th Sem.Course Title: Industrial TrainingSubject Code: TIU-UME- L403Contact Hours/Week: 0-0-0 (L-T-P)Credit: Practical-1.5Prerequisite Course: Theory and practical subjects of Mechanical Engineering

Course Objective

Enable the students to

- 1. Improve their knowledge and skills relevant to their areas of specialization.
- 2. Relate, apply and adapt relevant knowledge, concepts and theories within an industrial organization, practice and ethics.
- 3. Acquire knowledge and skills to compete in the job market with this experience and exposure.

Course Outcome

On completion of the course, the student will be able to:

C01	apply the knowledge and skills they have acquired on campus in a real-life	КЗ
	work situation	
CO2	Develop knowledge of contemporary issues	K2
CO3	expose students to a work environment, common practices, employment	K4
	opportunities and work ethics in their relevant field	
CO4	Develop written communication and technical report writing skills	K6
C05	enhance the employability skills of the students	K5
C06	provide opportunities for students to be offered jobs in the organizations in	K3
	which they undergo their Industrial Training	

Course Content

Industrial Training of four weeks at an Institute approved organization to be done during vacation in Semester VI, credit to be given in Semester VII. Students shall have to submit a report endorsed by the Industry Training Manager/ Lab-in-charge of R&D organization.

				Р	RO	GR/	PROG OUT	RAM SPE COMES (1	ECIFIC PSO)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	-	-	2	-	-	-	3	-	2	2	3	-	2
CO2	Ι	2	-	1	I	2	2	I	Ι	-	-	2	2	-	-
CO3	-	Ι	Ι	-	١	2	١	2	3	Ι	-	2	2	-	-
CO4	1	١	-	Ι	-	1	1	1	-	3	-	1	-	-	-
CO5	Ι	Ι	Ι	Ι	I	I	I	I	3	-	3	2	_	-	2
C06	1	-	١	-	١	١	١	١	2	١	Ι	1	-	-	-

TECHNO INDIA UNIVERSITY WESTBENGAL

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: B. Tech Project I	Subject Code: TIU-UME-P403
Contact hours/week: 0-0-3 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- To enhance students ability to identify, formulate, and analyze engineering problems by conducting literature surveys, exploring recent industry trends, and applying fundamental principles of science and engineering.
- To equip students with the skills to prepare comprehensive project reports, deliver effective presentations, and confidently handle technical reviews and viva voce examinations.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Analyze and formulate complex engineering problems by conducting literature reviews, understanding industry trends, and applying fundamental scientific and engineering principles.	K4
CO2	Develop innovative solutions or conduct independent research in specialized areas of Mechanical Engineering, demonstrating creativity in design and analysis.	K6
CO3	Apply appropriate methodologies to prepare well-structured and technically sound project reports that meet academic and professional standards.	К3
CO4	Evaluate and present project findings effectively, articulating ideas clearly and confidently to an expert evaluation board.	K5
CO5	Apply knowledge from various mechanical engineering disciplines (Heat Power, Fluid Mechanics, Machine Design, Applied Mechanics, and Production) to solve real-world problems.	К3
C06	Interpret feedback from supervisors and evaluation panels, critically assess project outcomes, and refine approaches for continuous improvement.	К5

COURSE CONTENT :

Each student has to work on a research topic or advanced design and analysis project for two semesters. The evaluation is to be carried out in each semester separately. The project can be selected from different specialization branches related to Mechanical Engineering (Heat Power/Fluid Mechanics/Machine Design/ Applied Mechanics/ Production). A list of topics will be offered by the department. Students have to submit a project report to the respective supervisors and give a presentation of the work done in front of a specialization specific evaluation board.

Reference:

1. Any Journals or Books

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	3	1	2	2	-	-	1	-	-	-	2	3	-	2	
CO2	2	-	3	2	3	-	-	I	-	-	-	2	3	-	2	
CO3	-	_	Ι	Ι	Ι	_	-	Ι	_	2	-	1	-	_	_	
CO4	-	1	١	١	١	-	-	١	2	3	I	1	I	-	-	
C05	3	2	1	-	2	_	_	1	-	_	-	2	3	_	2	
C06	-	1	١	١	١	-	-	١	-	-	I	2	I	-	-	

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 7th Sem.				
Course Title: Career Advancement & Skill Development	Subject Code: TIU-UME-S409				
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2				

COURSE OBJECTIVE :

Enable the student to:

- get a grasp of the syllabus for GATE examination
- be acquainted with questions which are typically set in the GATE examination
- be acquainted with the techniques of technical writing and technical presentations

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	get a basic knowledge of Maths questions typically set in the GATE exam	K4
C02	be acquainted with the different methods of solving problems from the broad area of Applied Mechanics and Design	K4
CO3	be acquainted with the different methods of solving problems from the broad area of Fluid Mechanics and Thermal Sciences	K4
C04	get accustomed with the methods of solving problems in Manufacturing Science and Technology	K2
C05	come up with good quality technical writing on any suitable topic	K2
C06	make good quality and appealing technical presentations	K2

COURSE CONTENT :

MODULE 1: MATHEMATICS FOR GATE (MECHANICAL ENGINEERING)	12 Hours								
Matrix algebra, systems of linear equations, eigen values and eigen vectors, first order and higher									
order differential equations with constant coefficients, Laplace transforms, evaluation of definite									
and improper integrals, double and triple integrals, Vector calculus: Green, Gauss and Stokes'									
theorems, Fourier series									
MODULE 2: APPLIED MECHANICS AND DESI GN	12 Hours								
Engineering Mechanics: Force systems, equilibrium, trusses, centroids, friction, kinematics and									
dynamics of rigid bodies executing plane motion, impulse and momentum, work and energy, axial									
deformation of bars, torsion of shafts, beam bending and deflection, Castigliano's theorems, free									
and forced vibrations of SDOF systems, cams, gears and gear trains, S-N curve, principles of design									
of machine elements such as bolted, riveted, welded joints, brakes and clutches									
MODULE 3: FLUID MECHANICS AND THERMAL SCIENCES	10 Hours								
Fluid statics and kinematics, equations of continuity and momentum, Bernoulli's equation, viscous									

flows, head losses in pipes, bends and fittings, 1D heat conduction, heat transfer through fins, free and forced convection, dimensionless parameters, heat exchangers LMTD and NTU methods, Stefan Boltzmann's laws, Wien's displacement law, view factors, radiation network analysis, thermodynamics systems and processes, behaviour of ideal and real gases, zeroth, first and second laws of Thermodynamics, thermodynamic relations

MODULE 4: MANUFACTURING ENGINEERING

7 Hours

Limits, fits and tolerances, linear and angular measurements, comparators and interferometry, basic components of CAD/CAM, additive manufacturing, deterministic models, safe stock inventory control systems

MODULE 5:TECHNICAL WRITING AND PRESENTATION4 HoursNuances of technical writing and presentation, appealing ppt presentation methods, writing skills
and pedagogy45 HoursTOTAL LECTURES

Books:

- 1. GATE Mechanical Engineering, Chapterwise Previous Years' solved papers, Arihant ISBN: 9789359987033
- 2. Technical Writing, B.N. Basu, Prentice-Hall of India, ISBN: 9788120333345

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	3	١	I	١	١	I	Ι	Ι	Ι	Ι	2	3	Ι	-		
CO2	3	2	Ι	Ι	2	Ι	Ι	-	-	_	-	2	3	-	2		
CO3	3	2	Ι	١	2	١	١	Ι	Ι	Ι	Ι	2	3	Ι	2		
CO4	3	2	Ι	I	3	I	I	Ι	Ι	-	1	2	3	Ι	2		
CO5	Ι	Ι	Ι	١	١	١	١	Ι	2	3	Ι	2	I	Ι	-		
C06	-	Ι	-	-	-	I	1	-	3	3	-	2	-	-	_		

SEMESTER 8

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 8th Sem.
Course Title: Renewable Energy Sources	Subject Code: TIU-UME-E410
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- Explain the growth of energy demand and supply, the environmental consequences of fossil fuel consumption, and the significance of renewable energy in sustainable development.
- Differentiate between various solar energy technologies, including thermal and photovoltaic systems, and assess their efficiency, advantages, and applications.
- Examine the principles and operational characteristics of wind, biomass, ocean, and geothermal energy systems, and compare their feasibility for power generation.
- Develop optimized renewable energy solutions, integrating conversion technologies, storage mechanisms, and grid compatibility to enhance sustainability.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Describe the historical perspectives of energy demand and supply, the environmental impacts of fossil fuels, and the role of renewable energy in sustainable development	K1							
CO2	Explain the principles of solar energy utilization, including solar geometry, thermal electricity generation, and photovoltaic systems, along with their advantages and limitations.	K2							
CO3	Classify different wind energy systems, analyze wind characteristics, and compare site selection criteria for optimal energy generation.								
C04	Illustrate the working principles and operational characteristics of biomass energy systems, including biogas plants and gasifiers, for electricity generation.								
C05	Examine ocean energy conversion methods such as tidal, wave, and ocean thermal energy, evaluating their feasibility for power generation.	K4							
C06	Analyze the potential and efficiency of geothermal energy systems, identifying suitable conversion technologies and applications in power generation.	K4							

COURSE CONTENT:

MODULE 1:	INTRODUCTION	2 Hours							
Energy demar	d growth and supply: Historical Perspectives; Fossil fuels: Cons	sumption and							
Reserve; Environmental Impacts of Burning of Fossil fuels; Sustainable Development and Role of									
Renewable Energy									
MODULE 2:	SOLAR ENERGY BASICS	3 Hours							
Solar geometry; Primary and Secondary Solar energy and Utilization of Solar Energy.									
advantages and	d disadvantages. Low temperature applications: solar water heating,	space-heating,							
drying									
MODULE 3:	SOLAR THERMAL ELECTRICITY GENERATION	4 Hours							
Solar concentr	ators and tracking; Dish and Parabolic trough concentrating genera	ating systems,							
Central tower s	olar thermal power plants; Solar Ponds								
MODULE 4:	SOLAR PHOTOVOLTAIC SYSTEMS	7 Hours							
Basic principle	of power generation in a PV cell; Band gap and efficiency of PV cells;	Manufacturing							
methods of mo	ono- and poly-crystalline cells, Amorphous silicon thin film cells, Sin	gle and multi-							
junction cells;	Application of PV; Brief outline of solar, PV stand-alone system design	n; Storage and							
Balance of syst	em								
MODULE 5:	WIND ENERGY SYSTEMS	7 Hours							
Types of turbi	nes, Coefficient of Power, Betz limit, Wind electric generators, Powe	er curve; wind							
characteristics	and site selection; Wind farms for bulk power supply to grid; Pote	ential of wind							
electricity gene	ration in India and its current growth rate								
MODULE 6:	BIOMASS ENERGY	6 Hours							
Biomass: Sour	ces and Characteristics; Wet biogas plants; Biomass gasifiers: Clas	sification and							
Operating char	acteristics; Up draft and Down draft gasifiers; Gasifier based electric	ity generating							
systems; Maint	enance of gasifiers								
MODULE 7:	OCEAN ENERGY	5 Hours							
Tidal power pla	ants: single basin and two basis plants, Variation in generation level; C	Cean Thermal							
Electricity Con	version (OTEC); Electricity generation from waves: Shoreline and	Floating wave							
systems									
MODULE 8:	5 Hours								
Geothermal sit	es in India; High temperature and Low temperature sites; Conversion	technologies-							
Steam and Bina									
bteam and bin	ary systems; Geothermal power plants								

Books:

1. Renewable Energy Sources and Emerging Technologies D.P Kothari, K.C.Singal, Rakesh Ranjan. PHI Publication.

2. Non-Convectional Resources G.S. Sawhney; PHI Publication.

3. Non-Conventional Energy Sources by G.D. Rai, Khanna Publishers, Delhi.

4. Renewable Energy engineering and Technology: Principles and Practice, V.V.N. Kishore, TERI Press.

5. Renewable Energy Resources, Twidell J. and Weir T., Taylor & Francis

6. Renewable energy, Godfrey Boyle, Oxford Press.

DDOCDAM OUTCOMES (DO)	PROGRAM SPECIFIC
PROGRAM OUTCOMES (PO)	OUTCOMES (PSO)

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	١	I	1	2	3	2	-	-	_	2	2	-	2
CO2	3	2	١	I	2	-	3	١	١	Ι	_	1	3	_	2
CO3	3	2	I	I	2	Ι	3	I	١	I	_	2	3	_	2
CO4	2	2	١	١	2	2	2	١	١	Ι	_	2	3	_	2
CO5	2	2	I	Ι	1	-	3	I	Ι	Ι	_	1	2	-	2
C06	2	-	_	_	1	_	2	_	-	_	_	1	2	_	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech. in Mechanical Engineering	Year, Semester: 4th Yr., 8th Sem.							
Course Title: Additive Manufacturing	Subject Code: TIU-UME- E412							
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3							
Prerequisite Course: Material Science (TIU-UME-T217); Manufacturing Processes (TIU-UME-								
T218); Conventional and Nonconventional Machining Technology (TIU-UME-T315)								

Course Objective

Enable the students to

- understand the fundamentals and methodologies of additive manufacturing
- develop technical proficiency in am file formats and processing techniques
- apply additive manufacturing in industry and research

Course Outcome

On completion of the course, the student will be able to:

C01	Familiarity with additive manufacturing	K1
CO2	Concept of pre-processing techniques used in additive manufacturing	K2
CO3	Describe different additive manufacturing techniques	K2
CO4	Able to investigate and select a appropriate process and materials used in additive	K4
	manufacturing	
CO5	Able to solve problems related to additive manufacturing	K3
C06	Able to apply knowledge of additive manufacturing for various real-life applications	K3

Course Content

MODULE 1:	Introduction	6 Hours							
Definition of A	Definition of Additive Manufacturing, Additive Manufacturing as a natural process, Comparison of								
additive manu	facturing with other Manufacturing Processes, Evolution of Additive r	nanufacturing							
as a manufact	uring process, Additive manufacturing Methodology, Pre-processin	g, processing,							
post-processin	g, Advantages and Limitations of Additive manufacturing, Susta	inability, and							
classification o	f Additive Manufacturing.								
MODULE 2:	Additive Manufacturing Data formats and Pre-Processing	6 Hours							
Additive Manu	facturing File Formats: STL file format, Model slicing, Contour Gen	erations, Tool							
Path Generatio	n and Build File Preparations.								
MODULE 3:	Additive Manufacturing Methods	12 Hours							
3D-printing, St	ereo-lithography apparatus (SLA), Fused deposition modeling (FDM	4), Laminated							
Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation,									
Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form									
fabrication (EE	FFF), Electron beam melting (EBM), Plasma transferred arc additive r	nanufacturing							
(PTAAM), Tui	ngsten inert gas additive manufacturing (TIGAM), Metal inert	gas additive							

manufacturing (MIGAM).										
MODULE 4:	4: Applications of Additive Manufacturing									
Application Case Studies: Aerospace, Defense, Automobile, Bio-Medical, Rapid Tool										
Engineering.										
TOTAL LECTU	RES	39 Hours								

Recommended Books:

Main Reading

- 1. C.P. Paul and A.N. Janoop, Additive Manufacturing: Principles, Technologies and Applications, McGraw Hill Education (India) Pvt. Ltd.
- 2. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer.
- 3. C.K. Chua, K.F. Leong, and C.S. Lim, Rapid Prototyping: Principles and Applications, World Scientific Publishers.

Supplementary Reading

- 1. P.K. Venuvinod, and W. Ma, Rapid Prototyping: Laser-Based and Other Technologies, Springer.
- 2. M. Burns, Automated fabrication, Prentice-Hall.

		PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	Ι	Ι	I	2	Ι	Ι	Ι	-	Ι	Ι	1	2	1	_
CO2	2	I	Ι	١	3	Ι	Ι	Ι	-	Ι	Ι	1	2	-	_
CO3	3	2	Ι	١	2	Ι	Ι	Ι	-	Ι	1	1	3	-	_
CO4	2	2	3	I	2	Ι	Ι	Ι	-	Ι	Ι	2	3	1	2
CO5	3	3	Ι	2	2	Ι	Ι	Ι	-	Ι	Ι	2	3	-	2
C06	2	Ι	2	_	2	Ι	Ι	Ι	-	-	_	2	3	_	2

TECHNO INDIA UNIVERSITY

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 4th Yr., 8th Sem.
Course Title: B. Tech Project II	Subject Code: TIU-UME-P404
Contact hours/week: 0-0-6 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- To enhance students ability to identify, formulate, and analyze engineering problems by conducting literature surveys, exploring recent industry trends, and applying fundamental principles of science and engineering.
- To equip students with the skills to prepare comprehensive project reports, deliver effective presentations, and confidently handle technical reviews and viva voce examinations.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Analyze and formulate complex engineering problems by conducting literature reviews, understanding industry trends, and applying fundamental scientific and engineering principles.	K4
C02	Develop innovative solutions or conduct independent research in specialized areas of Mechanical Engineering, demonstrating creativity in design and analysis.	K6
CO3	Apply appropriate methodologies to prepare well-structured and technically sound project reports that meet academic and professional standards.	К3
CO4	Evaluate and present project findings effectively, articulating ideas clearly and confidently to an expert evaluation board.	K5
C05	Apply knowledge from various mechanical engineering disciplines (Heat Power, Fluid Mechanics, Machine Design, Applied Mechanics, and Production) to solve real-world problems.	К3
C06	Interpret feedback from supervisors and evaluation panels, critically assess project outcomes, and refine approaches for continuous improvement.	K5

COURSE CONTENT :

Each student has to work and complete the research topic or advanced design and analysis project for two semesters. The evaluation is to be carried out in each semester separately. The project can be selected from different specialization branches related to Mechanical Engineering (Heat Power/Fluid Mechanics/Machine Design/ Applied Mechanics/ Production). A list of topics will be offered by the

department. Students have to submit a project report to the respective supervisors and give a presentation of the work done in front of a specialization specific evaluation board. **Course Articulation Matrix:**

				Р	RO	GR/	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3	
C01	3	3	١	2	١	١	-	١	Ι	-	Ι	2	3	2	-
CO2	2	Ι	3	3	١	I	-	١	-	_	1	2	3	-	2
CO3	-	I	2	2	3	١	-	١	Ι	2	Ι	Ι	2	3	-
CO4	-	I	١	١	١	١	-	١	2	3	-	-	2	-	-
CO5	3	2	1	1	2	I	_	1	-	_	-	2	3	_	3
C06	-	-	1	2	-	1	_	2	-	2	-	3	2	-	2

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 4th Yr., 8th Sem.
Course Title: Grand Viva Voce	Subject Code: TIU-UME-S496
Contact Hours/Week: 0-0-0 (L-T-P)	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

- 1. Consolidate and integrate theoretical and practical knowledge acquired throughout the B. Tech Mechanical Engineering program, ensuring a strong foundation in core subjects.
- 2. Enhance analytical and problem-solving skills by applying fundamental engineering principles to real-world scenarios and technical challenges.
- 3. Develop confidence and effective technical communication by articulating clear, precise, and well-structured responses in a viva voce examination setting
- 4. Encourage interdisciplinary thinking and industry awareness by connecting theoretical concepts to modern engineering applications, advancements, and emerging technologies.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Recall the fundamental concepts from core mechanical engineering subjects, demonstrating a strong theoretical foundation.	K1
CO2	Apply the engineering principles to solve numerical problems and real-world mechanical systems	К3
CO3	Evaluate and troubleshoot practical engineering problems by integrating interdisciplinary knowledge from various mechanical engineering domains.	K5
CO4	Communicate the technical concepts, project findings, and problem-solving approaches confidently in a viva voce setting	K2
C05	Critically assess and compare different mechanical engineering methodologies, materials, and manufacturing processes for optimal engineering solutions	K4
C06	Synthesize and propose innovative solutions to engineering challenges by leveraging modern advancements and industry trends.	K6

COURSE CONTENT:

Each student will have to appear at a viva voce examination in front of a board of examiners comprising of faculty members from all the specializations on all subjects completed during the course of his/her undergraduate study. For B. Tech Mechanical covers core subjects, including Engineering Mechanics, Strength of Materials, Theory of Machines, Fluid Mechanics, Thermodynamics, Heat Transfer, Manufacturing Processes, and Machine Design. The viva assesses fundamental concepts, problem-solving skills, and real-world applications. Students should be prepared for theoretical questions, numerical problems, and discussions on projects or research work. A strong grasp of practical applications, industry advancements, and interdisciplinary topics is essential for success.

				Р	RO	GR/	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	Ι	I	١	-	-	١	-	Ι	Ι	Ι	3	-	-
CO2	2	3	Ι	I	2	-	-	١	-	Ι	Ι	Ι	3	-	-
CO3	2	2	١	2	١		-	١	-	١	1	Ι	3	_	2
CO4	Ι	Ι	١	I	١	Ι	-	I	2	3	Ι	Ι	2	_	_
CO5	Ι	I	2	١	3		-	١	-	١	1	Ι	2	_	3
C06	-	_	3	2	-	-	-	-	-	_	-	3	3	_	_

W E S T B E N G A L

Department of Mechanical Engineering

Program: B. Tech in Mechanical Engineering	Year, Semester: 4th Yr., 8th Sem.
Course Title: Career Advancement and Skill Development	Subject Code: TIU-UME-S402
Contact Hours/Week: 2–0– 0 (L–T–P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Identify and formulate two topics in a chosen area of Mechanical Engineering.
- 2. Conduct an in-depth literature survey on the topics
- 3. Come up with two comprehensive reports not exceeding 2000 words on each of those topics.

COURSE OUTCOME:

On completion of the course, the student will be able to:

C01	Define 2 topics in a preferred area of specialization.	K2
CO2	Formulate the problem statements with clear objectives.	K4
C03	Investigate the relevant body of literature on those topics.	K4
C04	Prepare two comprehensive reports on the two topics.	K6
C05	Present the findings in class using the ppt mode.	K4
C06	Participate in discussions following individual presentations.	K4

COURSE CONTENT:

	30 Hours								
Each student will be required to submit to the class teacher at least two diffe	erent articles								
containing about 2000 words on two different engineering topics of their choice,	, and will be								
required to give concise talks on those topics in the class according to the direction	n of the class								
teacher, and will have to participate in the discussion on such talks of other students also. The									
result of those assignments will be evaluated critically and grading would be given	1 accordingly.								
This will equip the students with requisite abilities to execute their undergraduate	project work								
concomitantly									

TOTAL LECTURES

30 Hours

				Р	RO	GR/	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	-	1	I	I	-	Ι	I	-	Ι	١	_	I	2	_	_
CO2	2	2	١	١	-	-	١	-	-	Ι	_	Ι	3	-	-
CO3	2	2	١	3	-	-	١	-	-	Ι	_	2	3	-	-
CO4	-	I	I	I	Ι	Ι	I	Ι	-	2	_	Ι	_	-	-
CO5	-	Ι	١	١	-	-	١	-	2	3	_	I	_	-	-
C06	-	_	-	-	-	-	-	-	3	2	_	_	_	_	_