

Syllabus

for

4-Years B.Tech.

in

Computer Science and Engineering (Specialization in Artificial Intelligence)

Academic Year: 2024-2025

Semester 6

Operations Research & Optimization Techniques (TIU-UMA-T302)

Program: B. Tech. in CSE-AI	Year, Semester: 3rd., 6th
Course Title: Operations Research & Optimization Techniques	Subject Code: TIU-UMA-T302
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. understand the importance and value of Operations Research in real life, and finding solutions to various real-life problems
- 2. formulate linear programming problem from verbal description, and finding solutions
- 3. learn the basics in the field of game theory and solution techniques of various problems
- 4. choose the appropriate queuing model for a given practical application and finding solutions
- 5. draw a network diagram and determine related time, path, etc.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	analyze any real-life system with limited constraints, present it in a linear programming form and hence find its solution.	K4
CO-2:	solve both balanced and unbalanced transportation problems using various methods.	К3
CO-3:	determine solutions of a variety of problems mathematically such as assignment, travelling salesman etc. and associate how real-life problems are depicted.	K4
CO-4:	formulate game models and solve them by utilizing different methods.	K4
CO-5:	choose the appropriate queuing situations and deduce the optimal solutions using models for different situations.	К3
CO-6:	construct network diagrams for service and manufacturing systems, and find related time, path, etc.	K4

MODULE 1:	Linear F	rogramming						14	Hours
Formulation of	of Linear	Programming	Problem,	Linear	dependence	and	indepe	ndence,	Basic
solutions, Conv	vex Sets, G	raphical Metho	d, Simplex	Method					

MODULE 2:	: Transportation and Assignment Problem			
Formulation of	Transportation Problem, Initial Feasible Solution Methods, Optimality	r Test,		
Degeneracy in '	ГР; Assignment Problem, Hungarian Method, Travelling Salesman Prol	olem		
MODULE 3:	Game Theory	8 Hours		
Two Person Ze	ro Sum Game, Pure and Mixed Strategies, Algebraic Solution Proced	ure, Graphical		
Solution				
MODULE 4:	Introduction to Queuing Models	5 Hours		
Elements of Queuing Model, Pure Birth Death Model.				
MODULE 5:	Network Analysis	6 Hours		
CPM review, Crashing of an activity, Crash-cost slope, Time-cost trade				
TOTAL LECTU	TOTAL LECTURES 45 Hour			

Books:

- 1. Ghosh, M. K., & Chakraborty, S. (2010). Linear programming and game theory. Prentice-Hall of India.
- 2. Taha, H. A. (2017). Operations research: An introduction (10th ed.). Pearson.
- 3. Sharma, J. K. (2017). Operations research: Theory and applications (6th ed.). Macmillan Publishers India.
- 4. Sharma, S. D. (2009). Operations research. Kedar Nath Ram Nath.
- 5. Swarup, K., Gupta, P. K., & Man Mohan. (2014). Operations research. Sultan Chand & Sons.

Computer Network (TIU-UCS-T304)

Program: B. Tech. in CSE-AI	Year, Semester: 3rd., 6th
Course Title: Computer Network	Subject Code: TIU-UCS-T304
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. understand network fundamentals including network types and topologies.
- 2. Analyze Network Protocols including TCP/IP, UDP, HTTP, FTP, and DNS, and understand their roles in data communication.
- 3. Explore OSI and TCP/IP Models and how data flows through different network layers.
- 4. Implement Routing and Switching Techniques including static and dynamic routing protocols

COURSE OUTCOME :

The students will be able to:

C01·	Describe the general principles of data communication, the concept of the	к2
CO1.	layered approach	112

CO2:	Describe how computer networks are organized with the concept of layered approach	К2
CO3:	Design logical sub-address blocks with a given address block and network topology	К3
CO4:	E Understanding of simple LAN with hubs, bridges, and switches	
C05:	Describe how routing protocols workK3	
CO6:	Understand network security threats and basic security mechanisms to protect data and communication.	K2

COURSE CONTENT :

MODULE 1: **10 Hours** Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.

MODULE 2:

Data link layer: Design issues, framing, Error detection and correction. Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channels. Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols. Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

MODULE 3:

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

MODULE 4:

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

MODULE 5:

Application Layer – Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TOTAL LECTURES 45 Hours

Books:

- 1. A. S. Tanenbaum and D. J. Wetherall, "Computer Networks", Pearson, 5th Edition, 2010, ISBN-10: 0132126958, ISBN-13: 978-0132126953.
- 2. B. A. Forouzan, "Data Communications and Networking", McGraw-Hill Education, 5th Edition, 2012, ISBN-10: 0073376221, ISBN-13: 978-0073376226.
- **3.** J. F. Kurose and K. W. Ross, "Computer Networking: A Top-Down Approach", Pearson, 8th Edition, 2021, ISBN-10: 0136681553, ISBN-13: 978-0136681557.

10 Hours

8 Hours

5 Hours

12 Hours

- **4.** W. Stallings, "Data and Computer Communications", Pearson, 10th Edition, 2013, ISBN-10: 0133506487, ISBN-13: 978-0133506488.
- **5.** D. E. Comer, "Computer Networks and Internets", Pearson, 6th Edition, 2014, ISBN-10: 0133587932, ISBN-13: 978-0133587937.
- **6.** M. A. Gallo and W. M. Hancock, "Computer Communications and Networking Technologies", Cengage Learning, 1st Edition, 2001, ISBN-10: 053437130X, ISBN-13: 978-0534371305.

Compiler Design (TIU-UCS-T320)

Program: B. Tech. in CSE-AI	Year, Semester: 3rd, 6 th
Course Title: Compiler Design	Subject Code: TIU-UCS-T320
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

- 1. To make the student aware about the basic concepts, i.e. different phases such as lexical analysis, syntax analysis, semantic analysis and code generation of compiler.
- 2. The students should know the different functionalities of compiler.
- 3. To make the students aware about the possible errors that can occur at different phases and how they can be addressed.
- 4. Make the students aware about the tools LEX and YACC.

COURSE OUTCOME:

The students will be able to:

C01:	Understand fundamentals of language parser and identify the relationships among different phases of compiler	К2
CO2:	Illustrate the use of different types of parsers and their constructions, production	K3
	rules and language semantics.	
CO3:	Inherited and synthesized attributes with their evaluations, run time storage	K3
	allocation.	KS
CO4:	Describe techniques for intermediate code generation and code optimization.	K2
CO5:	Analyze error detection and recovery techniques in different compiler phases.	К3
C06:	Implement and evaluate code generation techniques for efficiency.	K4

MODULE 1:	COMPILER STRUCTURE3 Hour			
Analysis-synth	esis model of compilation, various phases of a compiler, tool-based	approach to		
compiler const	ruction.			
MODULE 2:	LEXICAL ANALYSIS	6 Hours		
Interface with input, parser and symbol table, token, lexeme and patterns, difficulties in lexical				
analysis, error reporting, and implementation. Regular definition, Transition diagrams, LEX				
MODULE 3:	SYNTAX ANALYSIS	18 Hours		

Context free grammar, ambiguity, associativity, precedence, top-down parsing, recursive descent parsing, transformation on the grammars, predictive parsing, Bottom-up parsing, operator precedence grammars, LR parsers (SLR, LALR, LR), YACC.

MODULE 4:	SYNTAX DIRECTED DEFINITIONS	3 Hours	
Inherited and	synthesized attributes, dependency graph, evaluation order, bottom up	and top-	
down evaluatio	on of attributes, L- and S-attributed definitions		
MODULE 5:	TYPE CHECKING	2 Hours	
Type system,	type expressions, structural and name equivalence of types, type	conversion,	
overloaded fur	nctions and operators, polymorphic functions.		
MODULE 6:	RUN TIME SYSTEM	2 Hours	
dynamic storage allocation. Intermediate code generation: Intermediate representations, translation of declarations, assignments Intermediate Code generation for control flow, Boolean expressions and procedure calls, implementation issues.			
MODULE 7:	CODE GENERATION AND INSTRUCTION SELECTION	6 Hours	
Issues, basic bl	Issues, basic blocks and flow graphs, register allocation, code generation DAG representation of		
programs, code generation from DAGs, peep-hole optimization, code generator generators,			
specifications of machine			
MODULE 8:	CODE OPTIMIZATION	5 Hours	
Source of optimizations, and optimization of basic blocks, loops, global dataflow analysis, and			
solution to iterative data flow equations. Code improving transformations, dealing with aliases,			
data flow analysis of structured flow graphs.			

TOTAL LECTURES

Books:

- 1. Aho, Ullman, Sethi and Lam, Principles of Compiler Design, Pearson Education
- 2. Holub, Compiler Design in C, PHI
- 3. Andrew L. Appel, Modern Compiler Implementation in C, Foundation Books, Delhi
- 4. Dick Gruneet. Al., Modern Compiler Design, Wiley Dreamtech
- **5.** S. Chattopadhyay, Compiler Design, PHIS. Pal: Systems Programming, Oxford University Press

45 Hours

Program: B. Tech. in CSE-AI	Year, Semester: 3rd, 6th
Course Title: Software Engineering	Subject Code: TIU-UCS-T314
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

Software Engineering (TIU-UCS-T314)

COURSE OBJECTIVE

- 1. To develop basic Knowledge in Software Engineering and its applications.
- 2. To understand software Engineering layered architecture and the process framework.
- 3. To analyze software process models such as the waterfall, spiral, evolutionary models and agile method for software development.
- 4. To design software requirements and specifications of documents.

COURSE OUTCOME

The students will be able to:

C01:	Identify and describe fundamental software engineering concepts, principles and models.	
CO2:	Analyze and document software requirements using appropriate elicitation techniques and requirement engineering processes.	
CO3:	Design software solutions using modeling techniques such as UML, architectural styles, and design patterns.	
CO4:	Implement software applications by applying programming principles, coding standards, and development methodologies.	
C05:	Evaluate software quality through testing strategies, verification, validation, and project management techniques.	
C06:	Demonstrate teamwork, ethical considerations, and professional responsibility in software development projects.	

MODULE 1:	FOUNDATIONS OF SOFTWARE ENGINEERING	12 Hours			
Introduction to s development, so development, rol	Introduction to software engineering: Software and software engineering, phases in software development, software development process models, role of management in software development, role of metrics and measurement.				
MODULE 2:	SOFTWARE REQUIREMENTS AND PROJECT PLANNING	12 Hours			
Software requirement specifications: Role of SRS, problem analysis, requirement specification, validation, metrics, monitoring and control. Planning a software project: Cost estimation, project scheduling, staffing, personal planning, team structures, SCM, quality assurance plans, project-monitoring plans, risk management, Knowledge driven approach and development.					
MODULE 3:	SYSTEM AND DETAILED DESIGN	7 Hours			
System design: Design objectives, design principles, module level concepts, design methodology, structured design, design specifications, verification metrics, monitoring and control. Detailed design: Module specification, detailed design and process design language, verification.					
MODULE					
MODULE 4:	CODING AND TESTING	7 Hours			

Coding: Programming practice, verification, and metrics. Testing: Testing fundamentals, functional testing, structural testing, testing process, comparison of different V & V techniques.		
MODULE	ΣΩΕΤWARE ΩΠΑΙ ΙΤΥ ΑΝΌ ΒΕΙ ΙΑΡΙΙ ΙΤΥ	7
5:	SOF I WARE QUALITY AND RELIABILITY	Hours
Software quality; Garvin's quality dimensions, McCall's quality factor, ISO 9126 quality		
factor; Software Quality Dilemma; Introduction to Capability Maturity Models (CMM and		
CMMI); Introduction to software reliability, reliability models and estimation.		
	TOTAL LECTURES	45 Hours

Books:

- **1.** Roger S Pressman, Software Engineering-A Practitioners Approach, McGraw Hill Publications.
- 2. Pankaj Jalote, An Integrated Approach to Software Engineering, BPB Publications
- **3.** Rajib Mall, Fundamentals of Software Engineering, PHI Learning Private Limited
- **4.** Software Engineering, Ian Sommerville

Artificial Intelligence (TIU-UCS-T350)

Program: B. Tech. in CSE-AI	Year, Semester: 3 rd , 6 th
Course Title: Artificial Intelligence	Subject Code: TIU-UCS-T350
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVES:

- 1. Understand the core concepts, history and evolutions of Artificial Intelligence
- 2. Explore search and optimization techniques like heuristic and uninformed search, evolutionary algorithms
- 3. Develop Logical and Probabilistic Reasoning like Bayesian network, knowledge representations
- 4. Apply Machine Learning Concepts like supervised, unsupervised, reinforcement learning

COURSE OUTCOMES:

The students will be able to

C01.	Understand the fundamental concepts Artificial Intelligence such as	K3	
CO1.	knowledge representation, problem solving and expert systems	KZ	
CO2.	Understand the use of AI to solve communication problems using Natural		
002:	Language Processing		
CO3:	Develop knowledge of decision making and learning methods.	КЗ	
CO4:	develop new facts from existing knowledge base using resolution and		
C04.		114	
	unification.		

	problems based on rules and to develop systems for question-answer.	
C06	Apply AI techniques like heuristic search, genetic algorithms, and neural	W2
	networks to solve real-world problems.	KS

<u>Course Content</u>

MODULE 1:	BASICS OF AI	8 Hours
Introduction: Overview of Artificial intelligence- Problems of AI, AI technique, Tic - Tac - Toe		
problem., Intelligent Agents: Agents & environment, nature of environment, structure of agents,		
goal-based agen	ts, utility-based agents, learning agents., Learning: Forms of lear	ning, inductive
learning, learn	ing decision trees, explanation-based learning, learning ເ	using relevant
information, net	ıral net learning & genetic learning.	
MODULE 2. DIFFERENT TYPES OF SEARCHING ALGORITHMS, PROBLEM		12 Hours
MODULE 2.	SOLVING	15 110015
Problems, Prob	lem Space & search: Defining the problem as state space sear	ch, production
system, constra	int satisfaction problems, issues in the design of search pro	grams, Search
techniques: Solv	ving problems by searching: Problem solving agents, searching	for solutions;
uniform search	strategies: breadth first search, depth first search, depth	limited search,
bidirectional se	arch, comparing uniform search strategies, Heuristic search stra	ategies: Greedy
best-first searc	h, A* search, memory bounded heuristic search: local search	algorithms &
optimization pr	oblems: Hill climbing search, simulated annealing search, loca	l beam search,
genetic algorith	ms; constraint satisfaction problems, local search for constra	int satisfaction
problems, MCT	S-Monte Carlo Tree Search, Adversarial search: Games, optin	nal decisions &
strategies in gar	nes, the minimax search procedure, alpha-beta pruning, addition	al refinements,
iterative deepen	ing.	
MODULE 3:	KNOWLEDGE & REASONING, KNOWLEDGE & REASONING	12 Hours
Knowledge rep	presentation issues, representation & mapping, approaches	to knowledge
representation, issues in knowledge representation, Using predicate logic: Representing simple		
fact in logic, representing instant & ISA relationship, computable functions & predicates,		
resolution, natural deduction, Representing knowledge using rules: Procedural vs declarative		
knowledge, logic programming, forward vs backward reasoning, matching, control knowledge,		
Probabilistic reasoning: Representing knowledge in an uncertain domain, the semantics of		
Bayesian networks, Fuzzy sets, and fuzzy logics, belief propagation. Markov processes, and		
Hidden Markov models.		
MODULE 4:	DIFFERENT FIELDS OF AI, NATURAL LANGUAGE PROCESSING	12 Hours
Introduction, Sy	untactic processing, semantic analysis, discourse, and pragma	tic processing.,
Expert Systems: Representing and using domain knowledge, expert system shells, and		

knowledge acquisition. Basic knowledge of programming languages like Prolog.

TOTAL LECTURES 45 Hours

10 Hours

Books:

- 1. Artificial Intelligent e: Elaine Rich, Kevin Knight, Mc-Graw Hill.
- 2. Introduction to AI & Expert System: Dan W. Patterson, PHI.
- **3.** Artificial Intelligent by Luger (Pearson Education)
- 4. Russel & Norvig, Artificial Intelligent e: A Modern Approach, Pearson Education

Computer Networks Lab (TIU-UCS-L394)

Program: B.Tech. in CSE-AI	Year, Semester: 3 rd , 6th.	
Course Title:Computer Networks Lab	Subject Code: TIU-UCS-L394	
Contact Hours/Week : 0–0–3	Credit: 1.5	

COURSE OBJECTIVE :

Enable the student to:

- 1. Enumerate various network topologies and identify situations when different network topologies would be useful.
- 2. Explain and apply error control mechanisms to ensure reliable data transmission in computer networks.

COURSE OUTCOME :

On completion of the course, the student will be able:

CO-1	1 Explain the error control mechanisms in computer network infrastructure.		
CO-2	-2 Identify and describe the network layers, structure/format, and the role of each network layer.		
CO-3	-3 Design and implement various network applications such as data transmission.		
CO-4	Illustrate the connectivity and data transmission between client and server in real-time multimedia transmission.		
CO-5	inguish and explain various routing protocols, algorithms, and K4 rnetworking mechanisms.		
CO-6	Evaluate and troubleshoot network performance, addressing issues related to bandwidth, latency, and network reliability in both local and wide-area networks.	rks. K3	

MODULE 1:	INTRODUCTION TO NETWORK	9 Hours	
Network hard	ware, Network software, OSI, TCP/IP Reference models, Examp	ole Networks:	
ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber			
optics, Wireless	s transmission.		

MODULE 2:	DATA LINK LAYER

Data link layer: Design issues, framing, Error detection and correction. Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channels. Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols. Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

MODULE 3: NETWORK LAYER

Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

TRANSPORT LAYER MODULE 4:

Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

MODULE 5: **APPLICATION LAYER**

Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TOTAL LAB HOURS

Books:

- 1. Tanenbaum, A. S., & Wetherall, D. J. (2010). Computer Networks (5th ed.). Pearson.
- 2. Forouzan, B. A. (2017). Data Communications and Networking (5th ed.). McGraw-Hill Education.
- 3. Stallings, W. (2020). Data and Computer Communications (11th ed.). Pearson.
- 4. Comer, D. E. (2018). Computer Networks and Internets (6th ed.). Pearson.
- 5. Kurose, J. F., & Ross, K. W. (2021). Computer Networking: A Top-Down Approach (8th ed.). Pearson.
- 6. Peterson, L. L., & Davie, B. S. (2021). Computer Networks: A Systems Approach (6th ed.). Morgan Kaufmann.

Program: B. Tech. in CSE-AI	Year, Semester: 3 rd , 6 th
Course Title: Software Engineering Lab	Subject Code: TIU-UCS-L352
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

Software Engineering Lab (TIU-UCS-L352)

COURSE OBJECTIVE

Enable the student to:

- 1. Analyze software process models such as the waterfall, spiral, evolutionary models and agile method for software development.
- 2. Design software requirements and specifications of documents, project planning, scheduling, cost estimation, risk management.

9 Hours

9 Hours

8 Hours

45 Hours

3. Describe data models, object models, context models, behavioral models, coding style and testing issues. Also to know about the quality checking mechanism for software processes and products.

COURSE OUTCOME

On completion of the course, the student will be able:

C01	Identify and examine requirements from problem statements to construct software solutions.	K3
CO2	Develop and design software solutions using UML modeling techniques.	K4
CO3	Illustrate and apply software engineering principles to organize and manage software projects effectively.	K4
C04	Test and validate software systems using appropriate testing strategies and tactics.	K3
CO5	Implement and assess software metrics to improve the quality and maintainability of software products.	K4
C06	Demonstrate ethical, social, and legal responsibilities in software development and ensure compliance with industry standards.	К3

COURSE CONTENT:

MODULE 1:INTRODUCTION TO SOFTWARE ENGINEERING9 HoursIntroduction to software engineering: Software and software engineering, phases in software
development, software development process models, role of management in software
development, role of metrics and measurement.9 Hours

MODULE 2:REQUIREMENTANALYSISANDSPECIFICATION,PROJECT12 HoursMANAGEMENT

Software requirement specifications: Role of SRS, problem analysis, requirement specification, validation, metrics, monitoring and control. Planning a software project: Cost estimation, project scheduling, staffing, personal planning, team structures, SCM, quality assurance plans, project-monitoring plans, risk management, Knowledge driven approach and development.

MODULE 3: SOFTWARE DESIGN

9 Hours

9 Hours

6 Hours

System design: Design objectives, design principles, module level concepts, design methodology, structured design, design specifications, verification metrics, monitoring and control. Detailed design: Module specification, detailed design and process design language, verification.

MODULE 4: CODING AND TESTING

Coding: Programming practice, verification, and metrics.

Testing: Testing fundamentals, functional testing, structural testing, testing process, comparison of different V & V techniques.

MODULE 5: SOFTWARE QUALITY

Software quality; Garvin's quality dimensions, McCall's quality factor, ISO 9126 quality factor; Software Quality Dilemma; Introduction to Capability Maturity Models (CMM and CMMI); Introduction to software reliability, reliability models and estimation.

TOTAL LAB HOURS

45 Hours

Books:

- 1. Software Engineering, Ian Sommerville
- 2. R. Mall, "Fundamentals of Software Engineering", Prentice Hall of India
- 3. R. S. Pressman, "Software Engineering: A Practitioner's Approach", Tata McGraw Hill
- 4. D. Bell, "Software Engineering for Students", Pearson

Artificial Intelligence Lab (TIU-UCS-L350)

Program: B.Tech. in CSE-AI	Year, Semester: 3 rd , 6th.
Course Title: Artificial Intelligence Lab	Subject Code: TIU-UCS-L350
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand and implement fundamental Artificial Intelligence techniques, including search algorithms, optimization, and decision-making.
- 2. Develop AI-based problem-solving strategies using heuristic and adversarial search techniques.

COURSE OUTCOME:

On completion of the course, the student will be able:

CO-1	Implement and analyze graph traversal algorithms using Python.	КЗ
CO-2	Apply heuristic search algorithms to solve AI problems efficiently.	К3
CO-3	Develop and implement adversarial search algorithms for game playing.	K4
CO-4	Utilize optimization techniques for solving real-world AI problems.	K4
CO-5	Implement intelligent agent models and logical reasoning techniques.	К3
CO-6	Apply fuzzy logic systems for decision-making applications.	K4

COURSE CONTENT:

MODULE 1:	GRAPH SEARCH ALGORITHMS	9 Hours		
Introduction to graph traversal techniques, Breadth-First Search (BFS) and Depth-First Search (DFS), Implementation of BFS and DFS in Python, Application of BFS in solving the Water Jug				
Problem.				
MODULE 2:	INFORMED SEARCH ALGORITHMS	6 Hours		
Introduction	to heuristic search, A* Algorithm: concept, working, and im	plementation,		
Application of A* Algorithm in solving the 8-Puzzle Problem.				

MODULE 3: GAME PLAYING AND DECISION MAKING

9 Hours

Introduction to adversarial search, Min-Max Algorithm and its application in game playing, Implementation of Tic-Tac-Toe using Min-Max Algorithm, Heuristic optimization with Alpha-Beta Pruning.

MODULE 4: OPTIMIZATION TECHNIQUES

6 Hours

Introduction to optimization algorithms, Genetic Algorithms (GA): concept and working principle, Implementation of the Traveling Salesman Problem using a Simple Genetic Algorithm.

MODULE 5:INTELLIGENT AGENTS AND LOGICAL REASONING9 HoursTypes of intelligent agents, Rational Agents: Simple Reflex and Model-Based Reflex,
Implementation of First-Order Predicate Logic (FOPL) in AI systems.9 Hours

mprementatio	in of this of det the decide Logie (1 of L) in the systems.	
MODULE 6:	FUZZY LOGIC AND DECISION MAKING	6 Hours
Introduction to	fuzzy logic systems, Fuzzification and Defuzzification techniques, In	plementation
of Type-1 Fuzz	y Logic in decision-making problems.	
TOTAL LAB H	OURS	45 Hours

Books:

- 1. Artificial Intelligent e: Elaine Rich, Kevin Knight, Mc-Graw Hill.
- 2. Introduction to AI & Expert System: Dan W. Patterson, PHI.
- 3. Artificial Intelligent by Luger (Pearson Education)
- 4. Russel & Norvig, Artificial Intelligent e: A Modern Approach, Pearson Education

Mini Project (TIU-UCS-P302)

Program: B.Tech. in CSE-AI	Year, Semester: 3rd, 6th.	
Course Title: Mini Project	Subject Code: TIU-UCS-P302	
Contact Hours/Week: 0-4-8	Credit: 2	

COURSE OBJECTIVE :

Enable the student to:

- 1. Introduce students to research methodologies and techniques for identifying and formulating research problems in computer science.
- 2. Equip students with the ability to conduct a structured literature review and critically analyze existing research.
- 3. Develop students' skills in identifying research gaps and formulating clear, well-defined research objectives aligned with industry and academic needs..

COURSE OUTCOME :

On completion of the course, the student will be able:

CO-1	Design and implement a small-scale software or hardware-based solution.	K6
CO-2	Apply appropriate tools, algorithms, or frameworks to develop a functional prototype.	К3

CO-3	Test and evaluate the performance of the developed system.	K5
CO-4	Analyze challenges encountered during project development and propose solutions.	K4
CO-5	Effectively document the project and present findings through reports and presentations.	K4
CO-6	Collaborate effectively within a team to manage project timelines, resources, and deliverables.	K6

COURSE CONTENT :

Module-1	PROJECT PLANNING & INITIAL DEVELOPMENT				
Identifying proje	Identifying project topics based on real-world problems or emerging technologies. Gathering				
requirements an	d defining objectives. Selecting suitable development tools, languages, and				
frameworks, Eval	frameworks, Evaluating model/system performance using metrics like accuracy, latency, security				
level, etc.					
Module-2	PROTOTYPING & IMPLEMENTATION				

Developing the initial version of the software/hardware system. Integrating different components and debugging errors. Conducting basic performance evaluations and making iterative improvements.

Module-3 CONCLUSION & FUTURE SCOPE

Validating the mini-project against expected outcomes, Summarizing research findings and project outcomes. Discussing industry impact and real-world applications.

Natural Language Processing (NLP) and its Applications (TIU-CASD-UCS-S398A)

Program: B. Tech. in CSE-AI	Year, Semester: 3rd., 6th
Course Title: Natural Language Processing	Subject Code: TIU-CASD-UCS-S398A
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

- **1.** Introducing cutting-edge systems and trends in natural language processing to the students.
- **2.** Make sure they comprehend the language's morphology, syntax, semantics, and pragmatic notions and are able to provide the necessary examples to support the aforementioned ideas.
- **3.** Teach them the importance of pragmatics in interpreting natural language.
- **4.** Give students the tools they need to explain a natural language processing application and to demonstrate syntactic, semantic, and pragmatic processing.

COURSE OUTCOME:

The students will be able to:

C01:	Explain the fundamental concepts of Natural Language Processing (NLP), including syntax, semantics, and pragmatics.	K2
CO2:	Apply various text preprocessing techniques such as tokenization, stemming, and lemmatization to prepare data for NLP tasks.	К 3
CO3:	Analyze different NLP models like N-grams, Hidden Markov Models (HMM), and neural networks to solve language-based problems.	К3
CO4:	Evaluate the performance of NLP algorithms using appropriate metrics (e.g., accuracy, precision, recall, and F1 score).	K4
CO5:	Design and implement NLP applications such as sentiment analysis, machine translation, and chatbots using modern frameworks (e.g., NLTK, Spacy, or TensorFlow).	К3
C06:	Critically assess the ethical considerations and biases in NLP models and their real-world impact.	К3

MODULE 1:	Introduction to NLP	10 Hours	
Natural langua	Natural language processing issues and strategies. Tools of NLP, Linguistic organization of NLP,		
NLP as an App	lication domain. Word Classes: Regular Expressions: Chomsky hierar	chy, CFG and	
different parsi	ng techniques, Morphology: Inflectional, derivational, parsing and	parsing with	
FST, Combinat	ional Rules, Joint and conditional probability. Probabilistic Langua	ge modeling	
and its Applica	tions.		
MODULE 2:	Language Modeling and Naïve Bayes	14 Hours	
Markov model	s, N- grams. Estimating the probability of a word and smoothing. Co	ounting words	
in Corpora, sin	ple N-grams, smoothing (Add One, Written-Bell, Good-Turing).		
Part of Speech	n Tagging and Hidden Markov Models: Part of Speech tagging, Indiar	1 Language on	
focus			
Morphology A	nalysis, Accuracy Measure and Probability, HMM, Viterbi algorithn	n for finding	
most likely HM	IM Path. HMM tagging, transformation based tagging. Probabilistic	Context Free	
Grammars: We	eighted context free grammars.		
MODULE 3:	Semantics	12 Hours	
Representing	Meaning: Unambiguous representation, canonical form, expressive	ness, meaning	
structure of language Semantic Analysis: NLP and IR, How NLP has used IR Towards Latent			
Semantic.			
Lexical Semantics: Lexemes(synonymy, hyponymy etc), WordNet, metonymy and their			
computational approaches Supervised and Unsupervised methods Word Sense			
Disambiguation: Selectional restriction based, machine learning based and dictionary based			
approaches.			
MODULE 4:	Pragmatics	9 Hours	

Information Theory: Entropy, Cross-entropy, information gain. Reference resolution and phenomena, syntactic and semantic constraints. Pronoun resolution algorithm, text coherence, and discourse structure

Natural Language Generation: Introduction to language generation, architecture, discourse planning (text schemata, rhetorical relations). Resource Constrained WSD, Parsing Algorithms, Parsing Ambiguous Sentences, Probabilistic Parsing Algorithms.

TOTAL LECTURES45 Hours

Books:

- **1.** D. Jurafsky & J. H. Martin "Speech and Language Processing An introduction to Language processing, Computational Linguistics, and Speech Recognition", Pearson Education
- **2.** Allen, James. 1995. "Natural Language Understanding". Benjamin/Cummings, 2ed. Bharathi, A., Vineet Chaitanya and Rajeev Sangal. 1995.
- **3.** Natural Language Processing- "A Pananian Perspective". Prentice Hall India, Eastern Economy Edition. 3. Eugene Cherniak: "Statistical Language Learning", MIT Press, 1993.
- **4.** Manning, Christopher and Heinrich Schutze. 1999. "Foundations of Statistical Natural Language Processing". MIT Press.
- **5.** Cognitively Inspired Natural Language Processing Abhijit Mishra, Pushpak Bhattacharyya Springer.

Modern Web Technologies (TIU-CASD-UCS-S398B)

Program: B. Tech. in CSE-AI	Year, Semester: 3 rd , 6 th
Course Title: Modern Web Technologies	Subject Code: TIU-CASD-UCS-S398B
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Learn HTML5, CSS3, JavaScript, and responsive design.
- 2. Build full-stack apps with React, Node.js, and databases.
- 3. Optimize security, performance, and cloud deployment.

COURSE OUTCOME:

The student will be able to:

CO 1.	Understand modern web development fundamentals, including HTML5, CSS3,	K)
CO-1.	and JavaScript frameworks.	K2
CO 2.	Develop responsive web applications using front-end technologies like	K3
CO-2:	React.js, Vue.js, or Angular.	КJ
CO 2.	Implement server-side programming with Node.js and Express.js for scalable	K A
CO-3.	applications.	Κ4
CO-4:	Manage dynamic data using databases like MongoDB and Firebase.	

CO-5:	K3	
	optimization techniques.	
CO 6.	Deploy and manage web applications using cloud platforms like AWS,	K A
0-0	Firebase, and Docker.	Κ4

COURSE CONTENT :

MODULE 1:	Introduction to Web Technologies	7 Hours
Basics of Intern	et, WWW, HTTP, HTTPS, HTML5, Semantic Elements, Forms, Multimed	lia, Canvas &
SVG, CSS3, Grid, Flexbox, Animations, Media Queries, Introduction to JavaScript, ES6+ Features,		
DOM Manipula	tion	

MODULE 2: Frontend Development

Responsive Web Design using Bootstrap/Tailwind CSS, JavaScript Frameworks, React.js, Vue.js, or Angular, Components, Props, State Management (Redux, Vuex), Routing and Navigation in SPA (Single Page Applications)

7 Hours

7 Hours

8 Hours

45 Hours

MODULE 3: Backend Development

Introduction to Node.js & Express.js, RESTful APIs, Building and Consuming APIs, Middleware, Authentication (JWT, OAuth), WebSockets for Real-time Communication.

MODULE 4: Database Technologies

SQL vs NoSQL Databases, MongoDB, Schema Design, CRUD Operations, Mongoose, Firebase Realtime Database & Firestore Integrating Frontend with Databases.

MODULE 5:Web Security & Performance Optimization8 HoursSecurity Concepts:CORS, CSRF, XSS, SQL Injection, Authentication and Authorization Techniques,
Web Performance Optimization (Lazy Loading, Caching, Minification), Progressive Web Apps (PWAs)
and Service Workers.

MODULE 6:Deployment & DevOps8 HoursCloud Deployment (AWS, Netlify, Firebase Hosting), CI/CD Pipelines for Web Development, Docker
and Containerization for Web Apps, SEO Optimization and Analytics.8 Hours

TOTAL LECTURES

Books:

- J. Duckett, "HTML & CSS: Design and Build Websites", Wiley, 2011, ISBN-10: 1118008189, ISBN-13: 978-1118008188.
- 2. E. Freeman and E. Robson, "Head First HTML and CSS", O'Reilly Media, 2012, ISBN-10: 0596159900, ISBN-13: 978-0596159900.
- 3. M. Haverbeke, "Eloquent JavaScript: A Modern Introduction to Programming", No Starch Press, 2018, ISBN-10: 1593279507, ISBN-13: 978-1593279509.
- 4. A. Rauschmayer, "Speaking JavaScript: An In-Depth Guide for Programmers", O'Reilly Media, 2014, ISBN-10: 1449365035, ISBN-13: 978-1449365035.
- B. W. Griffith, "Full-Stack React Projects", Packt Publishing, 2020, ISBN-10: 1839215410, ISBN-13: 978-1839215414.

- K. S. Syed, "Node.js Design Patterns", Packt Publishing, 2020, ISBN-10: 1839214112, ISBN-13: 978-1839214110.
- 7. M. Nebeling, "Modern Web Development: Understanding Domains, Technologies, and User Experience", Springer, 2019, ISBN-10: 303017593X, ISBN-13: 978-3030175932.

Career Advancement & Skill Development-VI Aptitude and Soft Skill (TIU-CASD-UTR-S398A)

Program: B. Tech. in CSE-AI	Year, Semester: 3 rd , 6th	
Course Title: Career Advancement & Skill Development-VI Aptitude and Soft Skill	Subject Code: TIU-CASD-UTR-S398A	
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2	

COURSE OBJECTIVE:

Enable the student to:

- 5. develop foundational skills in quantitative aptitude, covering algebra, number systems, and data interpretation.
- 6. enhance problem-solving abilities using mathematical techniques like probability, permutations, and coordinate geometry.
- 7. strengthen logical and analytical reasoning through puzzles, syllogisms, and non-verbal reasoning.

COURSE OUTCOME:

The student will be able to:

CO-1	Recall fundamental concepts of algebra, number systems, statistics, and arithmetic calculations.	K1
CO-2	Apply quantitative techniques to solve problems related to percentages, profit & loss, time & work, and speed & distance.	K2
CO-3	Analyze complex mathematical problems involving permutations & combinations, probability, logarithms, and coordinate geometry.	КЗ
CO-4	Evaluate reasoning-based problems such as syllogism, puzzles, blood relations, and coding-decoding for logical conclusions.	КЗ
CO-5	Solve non-verbal reasoning problems involving patterns, sequences, and spatial reasoning techniques.	K4
CO-6	Interpret data from charts, graphs, and tables to draw meaningful conclusions for decision-making.	K4

Module 1:	Fundamentals of Quantitative Aptitude	5 Hours
Algebra – Basics, Number Systems & Divisibility Rules, HCF & LCM, Numbers Fractions, Arithmetic Mean, Geometric Mean, Median, Mode, Standard Deviation & V		and Decimal Variance.
Module 2:	Arithmetic and Data Interpretation	5 Hours

Percentage,	Profit & Loss,	Time and Wor	k, Speed,	Time & Distance	(Including	g Relative	Speed),
Ratio and Pr	oportion, Aver	ages, Data Inter	pretation	(Tables, Pie Char	ts, Graphs]).	

Module 3:

Advanced Quantitative Aptitude

5 Hours

Simple Interest & Compound Interest, Mixtures & Alligation, Pipes & Cisterns, Factor Theorem & Remainder Theorem, Permutation & Combination, Probability, Indices & Surds, Logarithm & Quadratic Equations.

Module 4:	Logical Reasoning – Basics	4 Hours
Sullagiam State	mont & Conclusions Statement & Accumptions Series Completic	m Q Analagu

Syllogism, Statement & Conclusions, Statement & Assumptions, Series Completion & Analogy, Alphabet Test, Seating Arrangements, Venn Diagrams.

Module 5:	Advanced Logical Reasoning	4 Hours
Direction Sense	e Test, Blood Relations, Puzzle Test, Classification, Coding-Decodi	ng, Number,
Ranking, and Ti	me Sequence Test, Eligibility Test.	

Module 6:	Non-Verbal & Analytical Reasoning	3 Hours
Alphanumeric	Sequence Puzzle, Mathematical Operations, Logical Sequence	e of Words,
Arithmetical Re	asoning, Inserting the Missing Character, Non-Verbal Reasoning (Se	eries, Analogy,
Classification, Analytical Reasoning, Completion of Patterns), Paper Cutting & Pap		
Cubes and Dice	e, Rule Detection, Grouping of Identical Figures, Dot Situation, Co	onstruction of
Squares and Tri	angles.	

Module 7:	Special Topics & Exam Preparation	4 Hours
Clocks & Calen	dar, 2D Coordinate Geometry (Straight lines, Locus, Circles, Ellij	ose, Parabola,
Hyperbola), Mensuration (2D & 3D), Geometry & Trigonometry, Graphical Concepts of Equations		
and Inequations, Function, Variation, and Series (A.P, G.P, H.P), Binomial Theorem Applications		
(Fermat's, Wilson's, Totient Method), Data Sufficiency Problems (Covering all modules), Mock		
Tests & Problem-Solving Sessions.		

TOAL LECTURE 30 Hours

Books:

- **1.** Aggarwal, R. S. (2018). Quantitative aptitude for competitive examinations (Revised ed.). S. Chand Publishing.
- 2. Verma, R. (2018). Fast track objective arithmetic (2nd ed.). Arihant Publications.
- **3.** Aggarwal, R. S. (2019). A modern approach to verbal & non-verbal reasoning (Revised ed.). S. Chand Publishing.
- **4.** Sinha, N. K. (2020). Logical reasoning and data interpretation for the CAT (5th ed.). Pearson Education.
- **5.** Sharma, A. (2021). How to prepare for quantitative aptitude for the CAT (10th ed.). McGraw Hill.