

Syllabus

for

4-Years B.Tech.

in

Computer Science and Engineering (Specialization in Artificial Intelligence)

Academic Year: 2024-2025

Semester 4

Mathematics IV (TIU-UMA-T206)

Program: B. Tech. in CSE, CSE AI	Year, Semester: 2nd Yr., 4th Sem.	
Course Title: Mathematics IV	Subject Code: TIU-UMA-T206	
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4	

COURSE OBJECTIVE:

Enable the student to:

- 1. learn the concept of probability, random variables, probability distribution.
- 2. obtain ideas about interpolation, numerical integration, and differentiation.
- 3. know the methods for solving simultaneous linear algebraic equations and differential equations.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	apply concept of probability and calculate the probability of random events		
CO-2:	apply probability distributions to solve simple problems		
CO-3:	: have an understanding of the concept of error in numerical analysis		
CO-4:	: develop an idea about different interpolation methods		
CO-5:	establish the concepts of numerical differentiation and integration		
CO-6:	apply various numerical methods for solving different types of problem such as simultaneous equations, algebraic, transcendental, and differential equations.	K4	

MODULE 1:	PROBABILITY	20 Hours
independent e Random Varia density and cu Distributions	Classical, relative frequency and axiomatic definitions of probability, mutually exclusive events independent events, conditional probability, Bayes' Theorem. Random Variables - Discrete and continuous random variables, probability mass, probabilit density and cumulative distribution functions, mathematical expectation, moments. Distributions - Uniform, Binomial, Geometric, Poisson, Exponential, Gamma, Norma distributions. Functions of a random variable.	
MODULE 2:	NUMERICAL TECHNIQUES	25 Hours
Approximations and round off errors, Truncation errors and Taylor Series. Interpolation – Newton's Forward, Backward, Lagrange Interpolation methods Numerical Differentiation, Numerical Integration – Trapezoidal, Simpson's 1/3rd rules		

Determination of roots of polynomials and transcendental equations by Bisection, Iteration, Newton-Raphson, Regula-Falsi methods.

Solutions of linear simultaneous linear algebraic equations by Gauss Elimination and Gauss-Seidel iteration methods.

Numerical solution of initial value problems by Euler, Modified Euler, Runge-Kutta 4th order.

TOTAL LECTURES 45 Hours

Books:

- 1. Erwin Kreyszic-Advanced Engg. Mathematics
- 2. S. S. Sastry-An Introduction to Numerical Analysis.
- 3. Dutta and Jana- Numerical Analysis.
- 4. S. A. Mollah- Numerical Analysis and Computational Procedures
- 5. Probability and Statistics for Scientists and Engineers by Sheldon Ross

Computer Architecture (TIU-UCS-T220)

Program: B.Tech in CSE-AI	Year, Semester: 2 nd .,4 th	
Course Title: Computer Architecture	Subject Code: TIU-UCS-T220	
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3	

COURSE OBJECTIVES:

- 1. To conceptualize the basics of organizational and architectural issues of a digital computer.
- 2. To analyze performance issues in processor and memory design of a digital computer.
- 3. To understand mapping techniques of different memory organization in digital computer.
- 4. To analyze processor performance improvement using instruction level parallelism.

COURSE OUTCOMES:

The students will be able to:

CO 1:	Describe the fundamental working principles of Basic Computer System architecture.	K1
CO 2:	Identify the design of Pipeline Architecture.	K2
CO 3:	Explain the memory hierarchy design and perform memory mapping operations.	K3
CO 4:	Identify the design of a pipelined CPU and hypothetical parallel processor	K4
CO 4.	architecture. VLIW and Superscalar Architecture.	
CO 5:	Explain the hardware design of multiprocessors systems and its CPU-Memory	K2
	interconnection architecture.	
CO 6:	Non-Von Neumann Architecture.	K2

MODULE 1:	Overview of von Neumann architecture	5 Hours
Instruction set	architecture; The Arithmetic and Logic Unit, The Control Unit, Memory	and I/O
devices and their interfacing to the CPU; Measuring and reporting performance; CISC and RISC		and RISC

processors.		
MODULE 2:	Pipelining	12 Hours
Basic concepts	Basic concepts of pipelining, data hazards, control hazards, and structural hazards; Techniques	
for overcomin	g or reducing the effects of various hazards.	
MODULE 3:	Hierarchical Memory Technology	10 Hours
Inclusion, Coh	erence and locality properties; Cache memoryorganizations, Techniques	s for
reducing cache	e misses; Virtual memory organization, mapping and management tech	niques,
memory repla	cement policies.	
MODULE 4:	Instruction-level parallelism	10 Hours
Concepts of ins	struction-level parallelism (ILP), Techniques for increasing ILP; Superso	alar, super-
pipelined and	VLIW processor architectures; Vector and Array processors.	
MODULE 5:	Multiprocessor Architecture	6 Hours
Taxonomy of p	Taxonomy of parallel architectures; Centralized shared-memoryarchitecture, synchronization,	
memory consis	stency, interconnection networks; Distributed shared-memory architec	ture,
Cluster compu	ters.	
MODULE 6:	Non von Neumann Architectures	2 Hours
Data flow Com	Data flow Computers, Reduction computer architectures, Systolic Architectures.	
	TOTAL LECTURES	45 Hours

Books:

- **1.** M Morris Mano, Computer System Architecture (Revised 3rd Edition), Pearson.
- **2.** John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann.
- **3.** Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-Hill.
- **4.** John Paul Shen and Mikko H. Lipasti, Modern Processor Design: Fundamentals of Superscalar Processors, Tata McGraw-Hill.
- **5.** M. J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House.

Graph Theory and Combinatorics (TIU-UCS-T224)

Program: B. Tech. in CSE-AI	Year, Semester: 4th., 7th	
Course Title: Graph Theory and Combinatorics	Subject Code: TIU-UCS-T224	
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3	

COURSE OBJECTIVE :

Enable the student to:

- 1. Introduce students to the fundamental concepts of graph theory, including different types of graphs, graph representations, and essential properties.
- 2. Enable students to identify and mathematically formulate problems related to graph theory.
- 3. Teach students to analyze and apply graph-theoretic algorithms for solving problems.
- 4. Develop an understanding of combinatorial principles, including permutations, combinations, and their applications in problem-solving.

COURSE OUTCOME:

The student will be able to:

C01:	Describe the concepts of graphs and related tools and techniques.	К2
C02:	D2: Identify and formulate problems which are related to graph theory and combinatorics.	
C03:	CO3: Analyze problems and apply graph-theoretic techniques for problem- solving.	
CO4:	O4: Describe the principles of combinatorics and apply them for problem- solving.	
C05:	5: Perform combinatorial analysis of problems of diverse nature.	
C06:	Develop efficient algorithms and models using graph theory and combinatorial techniques to solve real-world problems.	K4

COURSE CONTENT:

MODULE 1:	FUNDAMENTALS OF GRAPH THEORY	9 Hours	
Binary relation on set, concepts and definition of graph; undirected, directed, weighted graphs,			
and simple graphs; complete graphs, sparse graphs, and dense graphs. adjacency of vertices and			
degree of vertices; relationship between number of vertices and number of edges; incidence			
between verti	ces and edges.		

10 Hours

Operations on graph; graph isomorphism; Path connectivity and connected components in a graph, properties and computation. Euler's Tour, Hamiltonian path, Topological sorting, Traveling salesman's problem. strongly connected graph and components. representations of a graph in computer; graph exploration techniques:

Breadth-first search (BFS) and Depth-first search (DFS) and their applications.

MODULE 3: SPANNING TREES, SHORTEST PATHS, AND GRAPH PROPERTIES 9 Hours

Spanning tree of a graph, minimum spanning tree (MST) of a weighted graph, its properties and computation (Kruskal's and Prim's algorithms). Concepts of shorted paths in a graph, their properties and computation. Concepts of planar graphs and their properties; dual graph of a planar graph; bipartite graphs; tree as a graph and its properties; graph coloring.

MODULE 4:	COMBINATORICS AND COUNTING PRINCIPLES	9 Hours	
Recapitulation	n of concepts from previous discrete mathematics course; the rules	of sum and	
product; perm	nutations, combinations, selection; The pigeonhole principle and its v	ariants; The	
Binomial the	Binomial theorem, combinations with repetition, the Catalon numbers; The multinomial		
theorem. Com	theorem. Combinatorial problems in discrete probability.		
MODULE 5:	ADVANCED COUNTING TECHNIQUES AND RECURRENCE	6 Hours	
	RELATIONS		
Principles of inclusion and exclusion, and its variants; derangements; generating functions;			
recurrence relations. Problem solving with these principles.			

TOTAL LECTURES

45 Hours

Books:

- 1. "Graph Theory with Applications" J.A. Bondy and U.S.R. Murty
- 2. "Introduction to Graph Theory" Douglas B. West
- **3.** "Graph Theory" Reinhard Diestel.
- 4. "Graphs, Networks, and Algorithms" Dieter Jungnickel

Object Oriented Programming (TIU-UCS-T214)

Program: B. Tech. in CSE-AI	Year, Semester: 2 nd , 4 th
Course Title: Object Oriented Programming	Subject Code: TIU-UCS-T214
Contact Hours/Week: 3-0-2 (L-T-P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. understand the real-world problem and design solutions by object oriented programming
- 2. analyze the nature of problems solved with object oriented techniques
- 3. design and implement suitable programming approach for a given application

COURSE OUTCOME :

The students will be able to:

CO-1:	Define an object-oriented approach to programming and identify potential benefits of object-oriented programming over other approaches	K2
CO-2 Understand the difference between the top-down and bottom-up program design approach		K2
CO-3:	3: Demonstrate the use of various OOPs concepts using C++	
CO-4:	Solve a computational problem by implementing the solution as a real-world entity	K4
CO-5:	Understand and apply some advanced constructs of C++ like virtual functions, operator overloading, exception handling, standard template library	К3

CO 6.	Analyze	and	optimize	С++	programs	for	efficiency,	maintainability,	and	КЛ
CO-0.	scalabilit	y usir	ng OOP bes	t prac	tices.					Ν4

COURSE CONTENT:

MODULE 1:	INTRODUCTION	10 Hours			
Introduction to	Introduction to Object Oriented Paradigm, Need of object-oriented design, Drawbacks of Procedure				
Oriented Progr	amming, Features of object-oriented languages, POP Vs OOP, Bene	efits & Applications			
of OOP, Differen	nce between C and C++.				
MODULE 2:	BASIC CONCEPTS OF OBJECT ORIENTATION	12 Hours			
Class, Object,	Data abstraction, Encapsulation, Inheritance, Polymorphism,	Message Passing,			
Dynamic bindii	ıg.				
MODULE 3:	FUNDAMENTALS OF OOPs	12 Hours			
Fundamentals of OOPs: Class & Objects, Constructors & Destructor. Different perspectives on					
Fundamentals	of OOPs: Class & Objects, Constructors & Destructor. Differer	nt perspectives on			
	of OOPs: Class & Objects, Constructors & Destructor. Differer pes of inheritance, Polymorphism: Compile Time & Run time Poly	1 1			
inheritance, Ty		ymorphism, Virtual			
inheritance, Ty	pes of inheritance, Polymorphism: Compile Time & Run time Poly	ymorphism, Virtual			
inheritance, Ty	pes of inheritance, Polymorphism: Compile Time & Run time Poly	ymorphism, Virtual			
inheritance, Ty functions, Virtu MODULE 4:	pes of inheritance, Polymorphism: Compile Time & Run time Poly al table construction, Overloading, Overriding, Abstract Class, Virtu	ymorphism, Virtual aal Class. 11 Hours			
inheritance, Ty functions, Virtu MODULE 4:	pes of inheritance, Polymorphism: Compile Time & Run time Poly al table construction, Overloading, Overriding, Abstract Class, Virtu ADVANCE OOP CONCEPTS ction Templates, Standard Template Libraries in C++: lists, ve	ymorphism, Virtual aal Class. 11 Hours			

Books:

- 1. Robert Lafore, Object-Oriented Programming in C++, Fourth Edition, Pearson.
- 2. Herbert Schildt, C++: The Complete Reference, Fourth Edition, Mc-Graw Hill Education, India, 2003
- 3. Bjarne Stroustrup, The C++ Programming Language, Third Edition, Pearson, 2000.
- 4. E. Balagurusamy, Object-Oriented Programming with C++, 8th Edition, Mc-Graw Hill Education 2021
- 5. Scott Meyers, Effective Modern C++, O'Reilly Media, Inc., 2014.
- 6. Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library, Addison-Wesley Professional Computing Series, 2001.

Microprocessor & Microcontroller (TIU-UEC-T210)

Program: B. Tech. in CSE-AI	Year, Semester: 2 nd , 4th
Course Title: Microprocessor & Microcontroller	Subject Code: TIU-UEC-T210
Contact Hours/Week : 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

1. Learn about the fundamentals of Microprocessor and Microcontroller Systems and its Components. They should be able to write and understand the assembly language program

by applying the concept of 8085 and 8086 microprocessors' architecture, interrupts, instructions sets etc.

- 2. Understand understand the working principle, pin diagram, memory interfacing, instructions of 8051 microcontroller so that they can design application specific systems.
- 3. Design and analyse the microprocessor based system they need to understand the operations of different peripheral devices such as 8255, 8257/8237A etc. and corresponding interfacing circuits.
- 4. Understand measurement and control techniques of different electrical, physical quantities by designing and analysing processor based systems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamentals of microprocessors and microcontrollers	K2
CO-2:	Develop assembly language programming skills for 8085 microprocessor	K2
CO-3:	Analyze and design interfacing techniques for peripheral devices	K4
CO-4:	Demonstrate knowledge of 8086 microprocessor architecture and programming	K2
CO-5:	Demonstrate knowledge of 8051 microcontroller architecture and programming	K2
CO-6:	Apply microprocessor and microcontroller concepts to measurement and control applications	К3

COURSE CONTENT :

MODULE 1:	INTRODUCTION TO 8085 (8 BIT PROCESSOR)	15 Hours				
Introduction t	Introduction to 8085 (8 bit processor): Evolution of microprocessors and microcontrollers, CPU					
architecture-r	egister organization, pin description and features, addressing mode	s, Instruction				
set and Asser	nbly Language Programming. Instruction cycle, machine cycle, Tin	ning diagram,				
stack and sub	outine operation.					
MODULE 2:	HARDWARE INTERFACING AND PERIPHERALS	10 Hours				
Hardware Inte	erfacing and Peripherals: Interfacing memory, IO devices (IO mapped	IO& Memory				
mapped IO). In	nterrupts, Interfacing 8255 peripheral, DMA controller (8237).					
MODULE 3:	INTRODUCTION TO 8086 (16 BIT PROCESSOR)	10 Hours				
Introduction to 8086 (16 bit processor): Architecture, register organization, pin description and						
features. Instruction Set and Addressing modes, interfacing memory, IO devices, Interrupts.						
MODULE 4:	MODULE 4: INTRODUCTION TO 8051 (8 BIT MICROCONTROLLER) 10 Hours					
Introduction to 8051 (8 bit microcontroller): Architecture, Pin description and features, Special						
function registers, I/O pin ports and circuits, Internal, External memories, addressing modes,						
Assembly Language Programming.						
	TOTAL LECTUDES	45 Hours				

TOTAL LECTURES 45 Hours

Books:

- 1. R. Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram.
- 2. B.Ram, "Fundamentals of Microprocessors and Microcontrollers" , Dhanpat Rai Publication.
- 3. D. V. Hall, "Microprocessors and Interfacing", McGraw Hill
- 4. K. M. Bhurchandi and A. K. Ray, "Advanced Microprocessors and Peripherals", Tata McGraw Hill
- 5. M. A. Mazidi, J. G. Mazidi and R. D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson
- 6. K. Ayala, "The 8051 Microcontroller", Delmar Cengage Learning

Numerical Lab (TIU-UCS-L216)

Program: B.Tech. in CSE-AI	Year, Semester: 2 nd , 4th.
Course Title: Numerical Lab	Subject Code: TIU-UCS-L216
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. apply numerical techniques to approximate functions and find the area under them
- 2. use numerical methods to find approximate roots of equation, find solutions to systems of equations, solve differential equations etc.
- 3. use computational tools to implement the numerical methods

COURSE OUTCOME :

On completion of the course, the student will be able:

CO-1:	approximate a function by a linear polynomial	
CO-2:	calculate the approximate the area under a curve	
CO-3:	use numerical techniques to find the approximate solution of alegebraic and transcendental equations	K4
CO-4:	Find the exact solution of a system of equations by direct methods	
CO-5:	5: find the approximate solution of a system of equations by indirect methods	
CO-6:	find the numerical solution for initial value problems (IVPs)	K4

MODULE 1:	FORWARD AND BACKWARD DIFFERENCE TABLE	9 Hours			
Introduction t	Introduction to finite differences and their applications, Forward and Backward Difference				
Operators, Con	struction of Difference Tables, Higher-order differences and accuracy a	analysis			
MODULE 2:	INTERPOLATION METHODS	9 Hours			
Newton's For	Newton's Forward and Backward Interpolation Formulas, Lagrange's Interpolation Method,				
Applications of interpolation in numerical computations					
	interpolation in numerical compatations				

MODULE 3:	NUMERICAL INTEGRATION6 Hours				
Introduction to	Numerical Integration, Trapezoidal Rule and its implementation, Sir	npson's 1/3rd			
Rule and applic	ations, Error analysis in numerical integration				
MODULE 4:	MODULE 4: NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL 6 Hours				
NODULE I.	EQUATIONS	o nours			
Bisection Met	hod: Concept, Algorithm, and Implementation, Newton-Raph	son Method:			
Convergence, L	imitations, and Applications				
MODULE 5:					
Introduction to solving systems of linear equations, Gauss Elimination Method: Direct approach to					
solving equatio	solving equations, Gauss-Seidel Iterative Method: Convergence and Stopping Criteria				
MODULE 6:	MODULE 6: NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS 9 Hours				
Euler's Method: Concept and Implementation, Modified Euler's Method for higher accuracy, Runge-					
Kutta Methods: 2nd and 4th Order Techniques, Applications in solving Ordinary Differential					
Equations (ODEs).					
TOTAL LAB HOURS 45 Hours					

Books:

- 1. Balagurusamy, E. (2017). Numerical Methods (1st ed.). McGraw-Hill Education.
- 2. Veerarajan, T., & Ramachandran, T. (2006). Numerical Methods with Programs in C and C++ (1st ed.). Tata McGraw-Hill.
- 3. Chapra, S. C. (2018). Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education.
- 4. Pradeep, N., & Govindarajan, G. (2008). Numerical Methods and Computer Programming (1st ed.). New Age International Publishers.
- 5. Grewal, B. S. (2019). Numerical Methods in Engineering and Science with Programs in C and C++ (10th ed.). Khanna Publishers.
- 6. Rajaraman, V. (2012). Computer Oriented Numerical Methods (3rd ed.). PHI Learning Pvt. Ltd.

Computer Architecture Lab (TIU-UCS-L220)

Program: B.Tech. in CSE-AI	Year, Semester: 2 nd , 4th.
Course Title: Computer Architecture Lab	Subject Code: TIU-UCS-L220
Contact Hours/Week: 0–0–3	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

1. Understand the architectural principles of computer systems and their organization.

- 2. Implement and analyze fundamental hardware components.
- 3. Develop memory and arithmetic logic unit (ALU) designs for computing applications.

COURSE OUTCOME :

Upon completion of the course, the student will be able to:

CO-1	Explain the fundamental aspects of computer architecture design and analysis.	
CO-2	2 Demonstrate a comprehensive understanding of basic hardware concepts with Integrated Circuits	
CO-3	Illustrate the operations of different gates and their applications	К3
CO-4	Implement hardware designs and apply them in various domains.	
CO-5	Design the memory unit of a computer system.	
CO-6	Develop the arithmetic logic unit of a computer system.	К3

COURSE CONTENT:

MODULE 1:	BASIC LOGIC FUNDAMENTALS	9 Hours
Boolean algebra, Logic gates, Truth tables, K-map simplification, Implementation of logic		
functions using	gates	
MODULE 2:	COMBINATIONAL CIRCUIT DESIGN	9 Hours
Design and imp	elementation of Adders, Subtractors, Multiplexers, Decoders, and Enco	oders using
logic gates		
MODULE 3:	SEQUENTIAL CIRCUITS AND STATE MACHINES	6 Hours
Flip-Flops (SR,	D, JK, T), Registers, Counters (Synchronous and Asynchronous), H	Finite State
Machines		
MODULE 4:	MEMORY ORGANIZATION AND ADDRESSING 6 Hours	
RAM and ROM a	architectures, Cache memory design, Memory hierarchy, Address decod	ling
MODULE 5:	ARITHMETIC LOGIC UNIT (ALU) AND PROCESSOR DESIGN	6 Hours
Design of an	Design of an ALU, Arithmetic operations (addition, subtraction, multiplication), Logical	
operations, Bitwise manipulations		
MODULE 6:	CPU DESIGN AND PERFORMANCE OPTIMIZATION	9 Hours
Instruction set architecture, Execution cycle, Control unit design, Pipelining, Performance		
evaluation metrics		
	TOTAL LAB HOURS	45 Hours

Books:

1. M. Morris Mano & Michael D. Ciletti - Digital Design (5th ed.), Pearson

- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky Computer Organization and Embedded Systems (6th ed.), McGraw-Hill
- 3. William Stallings Computer Organization and Architecture (10th ed.), Pearson
- 4. David A. Patterson & John L. Hennessy Computer Organization and Design (5th ed.), Elsevier

Object Oriented Programming Lab (TIU-UCS-L214)

Program: B.Tech. in CSE-AI	Year, Semester: 2nd, 4th.
Course Title: Object Oriented Programming Lab	Subject Code: TIU-UCS-L214
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the mathematical foundations of various numerical methods and their significance in solving engineering and scientific problems.
- 2. Apply numerical techniques to solve algebraic equations, system equations, interpolation, differentiation, and integration using computational tools.

COURSE OUTCOME :

On completion of the course, the student will be able:

	on completion of the course, the student will be use.		
CO-1	Able to understand the foundational principles of object-oriented programming and its application in solving computational problems using C++.	K2	
CO-2	Able to comprehend and construct algorithms and flowcharts for problem- solving in object-oriented programming contexts.		
CO-3	Able to apply object-oriented programming concepts like classes, inheritance, and polymorphism in software development using C++.		
CO-4	-4Able to design, implement, and test object-oriented programs to solve real- world scenarios using appropriate programming techniques.		
CO-5	Able to analyze and optimize object-oriented solutions for complex problems encountered in industrial applications and software development projects.	K4	
CO-6	Evaluate and debug object-oriented programs to ensure robustness, efficiency, and adherence to best practices in software development using C++.	K4	

MODULE 1:	C++ BASICS AND STRUCTURES	4 Hours	
Introduction to	Introduction to C++, Data types, Control Flow and loops, Mathematical Operations using loops		
and condition	and conditions, Introduction of Structure in C++, Implementing Structure in Real World		
Scenarios, Using Structure for practical applications			

MODULE 2:	ULE 2: CLASSES AND OBJECTS, DATA STRUCTURES USING OBJECTS 7 Hours		
Introduction to	Introduction to Classes and Objects, Object-Oriented Program Design, Real-World Example: Toy-		
Train Ticket Co	ounter, implementing a Vector Class, Introduction to Data Structures Us	sing Objects,	
Implementing	a Linked List and Stack, Practical Application and Optimization		
MODULE 3:	CONSTRUCTORS, FUNCTIONS, ENUM AND STRING	9 Hours	
Introduction t	o Constructors and Destructors, different types of Constructors, Intr	oduction to	
function, Different use cases of Function implementation, Enum and String, String Handling in			
C++	r		
MODULE 4:	FRIEND FUNCTION, INLINE FUNCTION, POLYMORPHISM, VIRTUAL FUNCTION	9 Hours	
Implementation of Friend class and Friend Function, Introduction to Inline Function with			
implementation of inline mathematical operations, Implementation of Polymorphism, Run time			
and Compile time polymorphism, Function Overloading, Operator Overloading, Function			
Overriding, Runtime Polymorphism using Virtual Functions			
MODULE 5:	INHERITANCE, ABSTRACT CLASSES, AND FILE HANDLING	8 Hours	

MODULE 5:INHERITANCE, ABSTRACT CLASSES, AND FILE HANDLING8 HoursImplementation of Inheritance, Different types of Inheritance and its use cases, Abstract Classesand Pure Virtual Functions, Introduction to File Handling in C++, Reading and Writing Files

MODULE 6:

TEMPLATES, EXCEPTIONS, STANDARD TEMPLATE LIBRARY(STL) AND MULTI-FILE PROGRAMS: MINI PROJECT

8 Hours

Introduction to Templates -Concept of generic programming, Function templates, Class templates, Exception Handling, Standard Template Library (STL), Introduction to Multi-File Programs and implementing a Mini Project

TOTAL LAB HOURS 45 Hours

Books:

- 1. *Bjarne Stroustrup(2013).* The C++ Programming Language(4th ed.) Addison-Wesley.
- 2. Herbert Schildt (2014). C++: The Complete Reference (4th ed.). McGraw-Hill.
- 3. *Bjarne Stroustrup(2014).* Programming: Principles and Practice Using C++(2nd Ed.) Addison-Wesley.
- 4. Paul Deitel & Harvey Deitel(2016). C++ How to Program(10th ed.). Pearson.
- 5. Stanley B. Lippman, Josée Lajoie, & Barbara E. Moo (2012). *C++ Primer* (5th ed.). Addison-Wesley.
- 6. Matt Weisfeld (2019). The Object-Oriented Thought Process (5th ed.). Addison-Wesley.

Microprocessor and Microcontroller Lab (TIU-UEC-L218)

Program: B.Tech. in ECE	Year, Semester: 2 nd , 4 th .
--------------------------------	---

Course Title: Microprocessor and Microcontroller Lab	Subject Code: TIU-UEC-L218
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE :

Enable the student to:

- 5. Learn how to write, execute and debugassemble language programs (ALPs) for microprocessors.
- 6. Understand data manipulation, arithmetic, bitwise and logical operations for microprocessors.
- 7. Understand about memory addressing and data storage for microprocessors.
- 8. Understand the uses of looping, branching and conditional and unconditional jumps in ALPs to control execution flow for microprocessors.

COURSE OUTCOME :

On completion of the course, the student will be able:

CO-1	1Understand microprocessor architecture, memory organization, and register operations and assembly language programming.	
CO-2	Perform data manipulation and bitwise operations for complement, shifting, masking, and mask-off of data.	
CO-3	3 Implement arithmetic and logical operations to perform addition, subtraction, multiplication and division.	
CO-4	4 Apply data conversion and encoding techniques for efficient data representation.	
CO-5	-5 Develop and implement sorting and searching algorithms.	
CO-6	6 Learn how to store and retrieve data from specific memory locations, and debug and optimize assembly language programs for efficient execution.	

MODULE 1:	DATA MANIPULATION AND BITWISE OPERATIONS	6 Hours	
1's and 2's com	1's and 2's complement of input data, shifting or rotating of accumulator contents.		
MODULE 2:	ARITHMETIC OPERATIONS	9 Hours	
Addition and s	ubtraction of input data using control flow (loop), use of different a	rithmetic and	
branch control	instructions.		
MODULE 3:	DATA ENCODING AND MASKING	6 Hours	
Pack (mask) and unpack (mask off) of input data, checking even or odd input data, use of logical and branch control instructions.			
MODULE 4:	DATA CONVERSION	9 Hours	
BCD to Binary conversion and vice-versa: use of arithmetic, logical and branch control			
instructions.			
MODULE 5:	SORTING AND SEARCHING ALGORITHMS	9 Hours	

Searching and sorting of data from an array: handling of multiple memory locations for different data, use of branch control instructions.

		-
MODULE 6: ADVANCED ARITHMETIC OPERATIONS 9 Hour		9 Hours
Multiplication and division of input data using control flow (loop), use of different arithmetic and		
branch control instructions, repetitive addition and subtraction methods.		
TOTAL LAB HOURS48 Hours		

Books:

- 1. R. Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085",Penram
- 2. A. Nagoor Kani, "Microprocessor (8085) And its Applications" 2005, McGraw-Hill Education
- 3. D. V. Hall, "Microprocessors and Interfacing", McGraw Hill
- 4. M. A. Mazidi, J. G. Mazidi and R. D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson

Career Advancement & Skill Development-IV (TIU-UEN-S298)

Program:B.Tech CSE-AI	Year, Semester: 2 nd , 4 th
Course Title: CAREER ADVANCEMENT & SKILL DEVELOPMENT-IV	Subject Code: TIU-UEN-S298
Contact Hours/Week: 2-0-0 (L-T-P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. Strengthen and expand their communication skills in French.
- 2. Develop greater fluency in listening, speaking, reading, and writing.
- 3. Understand and apply more complex grammatical structures and vocabulary.
- 4. Express ideas in past and future tenses in conversations and written texts.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recognize and use an expanded range of everyday expressions.	K1
CO-2:	Understand and respond to conversations involving personal experiences.	K2
CO-3:	Use the passé composé and imparfait to talk about past events.	КЗ
CO-4:	Appraise short narratives, dialogues, and informational texts.	K4
CO-5:	Compose personal letters and messages.	K5
CO-6:	Generate and sustain conversations about familiar topics.	K5

MODULE 1:	EXPRESSING PAST EVENTS	6 Hours
Introduction t	o passé compose, Using auxiliary verbs "être" and "avoir", Talkir	ıg about past
experiences		

MODULE 2:	DESCRIBING ROUTINES AND HABITS IN THE PAST	6 Hours				
Introduction to imparfait, Differences between passé composé and imparfait, Describing past						
habits and ongoing actions						
MODULE 3:	FUTURE PLANS AND INTENTIONS	6 Hours				
Expressing future intentions with "aller + infinitive", Talking about upcoming events and travel						
plans, Making a	plans, Making appointments and invitations					
MODULE 4:	SHOPPING, SERVICES, AND TRANSACTIONS	6 Hours				
Asking for help and making purchases, Using expressions of quantity and price, Talking about						
Asking for hel	p and making purchases, Using expressions of quantity and price, '	Talking about				
Asking for hel		Talking about				
		Talking about				
		Talking about 6 Hours				
preferences an MODULE 5:	d needs	6 Hours				
preferences an MODULE 5:	d needs SOCIAL INTERACTIONS AND EVERYDAY SCENARIOS requests and giving advice, Expressing opinions and emotions, Wr	6 Hours				
preferences an MODULE 5: Making polite	d needs SOCIAL INTERACTIONS AND EVERYDAY SCENARIOS requests and giving advice, Expressing opinions and emotions, Wr	6 Hours				

Books:

Tech French - French for Science and Technology, Goyal Publishers, 2011