

Syllabus for B.Tech in Civil Engineering AY 2024-2025

3rd SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Career Advancement & Skill	Subject Code: TIU-UMG-S215
Development (Organizational Behaviour)	
Contact Hours/Week: 0–0–2 (L–T–P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the fundamental concepts of organizational behavior and its importance in engineering and management.
- 2. Analyze individual and group behavior in organizations to improve team dynamics and leadership effectiveness.
- 3. Apply motivation theories, leadership styles, and decision-making processes in workplace scenarios.
- 4. Evaluate the impact of organizational culture, ethics, and structure on employee performance.
- 5. Develop essential communication and conflict resolution skills for effective teamwork.
- 6. Foster an understanding of change management and strategies to handle organizational challenges.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain key concepts of organizational behavior, including individual and	K2
	group dynamics.	
CO2	Analyze the role of motivation, leadership, and communication in workplace	K4
	effectiveness.	
CO3	Apply organizational behavior principles to real-world case studies and	K3
	workplace situations.	
CO4	Evaluate the impact of organizational culture, ethics, and structure on decision-	K5
	making.	
CO5	Demonstrate conflict resolution techniques and teamwork strategies in	K3
	professional settings.	
CO6	Develop strategies for adapting to organizational change and innovation.	K6

MODULE 1:		7 Hours					
OB - Overview - Meaning of OB, Importance of OB, Field of OB, Contributing Disciplines,							
Applications in I	ndustry						
Organizational 7	Theory - Classical Theories: Scientific Management, Administra	ative Principles,					
Theory of Bure	aucracy; Human Relations Approach; Modern Theories: Syst	ems Approach,					
Contingency App	proach, Quantitative Approach, Behavioural Approach						
MODULE 2:		8 Hours					
Work Motivation	n – Approaches to Work Motivation, Theories of Motivation – Mas	low's Hierarchy					
of Need Theory, Alderfer's ERG Theory, Herzberg's Motivation - Hygiene Theory, McClelland's							
Achievement - Motivation Theory, McGregor's Theory X &Y, Vroom's Expectancy Theory,							
Porter and Lawler Expectancy Model							
Personality and I	ndividual Differences – Meaning of Personality, Determinants of P	ersonality,					

Theories of Personality, Measurement of Personality, Development of Personality

MODULE 3:	

12 Hours

The Process of Perception – Process and Principles, Nature and Importance, Factors influencing Perception, Perceptual Selectivity, Making Judgements, Social Perception Learning – Concepts and Principles(hybrid team), Theories of Learning, Types, Techniques of Administration, Reinforcement, Punishment, Learning about Self

MODULE 4:		12 Hours
Attitudes and Job	Satisfaction - Sources of Attitudes, Types of Attitudes,	Attitudes and
Consistency, Cogniti	ve Dissonance Theory, Attitude Surveys	
Work Stress - Une	derstanding Stress, Potential Sources of Stress, Consequen	nces of Stress,
Managing stress, Hyl	brid work challenges.	
TOTAL LECTURE	ES	39 Hours

Books:

- 1. Stephen P. Robbins & Timothy A. Judge, Organisational Behaviour, Pearson Education
- 2. Fred Luthans, Organizational Behavior: An Evidence-Based Approach, McGraw-Hill Education
- 3. John W. Newstrom & Keith Davis, Organizational Behavior: Human Behavior at Work, McGraw-Hill
- 4. K. Aswathappa, Organizational Behaviour, Himalaya Publishing House
- 5. Edgar H. Schein, Organizational Culture and Leadership, Wiley

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	1	1	2	1	2	1	2	1	2			
CO2	2	3	2	2	1	3	2	3	2	3	2	2			
CO3	1	2	2	2	2	2	2	3	3	3	2	2			
CO4	1	2	3	2	2	3	3	3	2	2	3	2			
CO5	1	2	2	2	2	2	2	3	3	3	2	2			
CO6	1	1	3	3	2	3	3	3	2	3	3	3			
	1.33	2.00	2.17	2.00	1.67	2.50	2.17	2.83	2.17	2.67	2.17	2.17			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Transform Calculus	Subject Code: TIU-UMA-T205
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. provide ideas about different transformations such as Laplace, Fourier transform
- 2. apply these transformations on solving differential equations such as initial value problem, boundary value problem
- 3. learn the concept of Fourier series

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	evaluate Laplace transform, inverse Laplace transform of a function.	K4
CO2	apply Laplace transform in solving initial value problems.	K3
CO3	interpret Fourier series representation of a function, sine and cosine series	K4
	representation.	
CO4	deduce the value of an integral with the help of Fourier integral theorem.	K4
CO5	determine Fourier transform, Fourier sine and cosine transform of a	K4
	function.	
CO6	apply Fourier transform in solving various problems.	K3

COURSE CONTENT:

MODULE 1:	Laplace Transform	15 Hours						
Laplace Transform, properties, Inverse, Convolution, Evaluation of some integrals by Laplace Transform, Solution to initial value problems.								
MODULE 2:	Fourier Series	10 Hours						
Fourier Series: Periodic functions, Fourier series representation of a function, half range series, sine and cosine series, Fourier integral formula, Parseval's identity.								
MODULE 3:	Fourier Transform	20 Hours						
Fourier Transform, Fourier sine and cosine transforms. Linearity, scaling, frequency shifting and time shifting properties. Self-reciprocity of Fourier Transform, convolution theorem. Applications to boundary value problems.								
TOTAL LECTU	JRES	45 Hours						

Books:

- 1. Laplace and Fourier Transforms, J. K. Goyal, K. P. Gupta, G. S. Gupta
- 2. Fourier series and Integral Transforms, Sreenadh S. et. Al.

3. Integral Transforms and Fourier Series, A.N. Srivastava

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	2	0	0	0	0	1	0	2			
CO2	3	3	2	2	2	0	0	0	0	1	0	2			
CO3	3	2	2	1	1	0	0	0	0	1	0	2			
CO4	3	3	2	3	2	0	0	0	0	1	0	2			
CO5	3	3	2	2	2	0	0	0	0	1	0	2			
CO6	3	3	2	2	3	0	0	0	0	1	0	3			
	3.00	2.67	1.83	2.00	2.00	0.00	0.00	0.00	0.00	1.00	0.00	2.17			

Program: B. Tech. in Civil Engineering	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Energy, Environment & Ecology	Subject Code: TIU-UCE-T221
Contact Hours/Week: 1–1–0 (L–T–P)	Credit: 2

The objective of the subject is to provide an introduction to the energy system and its relationship with the environment. To provide knowledge about ecology and how it is related to the environment. An introduction to the process of environmental audit through EIA is also incorporated in this course.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental principles of energy science and its role in societal, environmental, and climate issues.	К2
CO2	Describe various energy systems, sustainability concepts, and environmental impacts of energy consumption.	K2
CO3	Identify the importance of energy efficiency, conservation techniques, and clean energy technologies for sustainable development.	К3
CO4	Apply engineering principles for energy conservation, including Green Building concepts, LEED ratings, and energy audits.	К3
CO5	Explain ecological principles, including ecosystems, community ecology, and energy flow in ecosystems.	K2
CO6	Describe Environmental Impact Assessment (EIA) processes and analyze case studies related to environmental risk analysis.	К2

MODULE 1:	Introduction to Energy Science:	8 Hours				
Scientific princi	Scientific principles and historical interpretation to place energy use in the context of pressing					
societal, enviro	nmental and climate issues; Introduction to energy systems	and resources;				
Introduction to E	Energy, sustainability & the environment.					
MODULE 2:	Energy & Environment	5 Hours				
Energy efficienc	y and conservation; introduction to clean energy technologies and i	ts importance in				
sustainable deve	lopment; How future energy use can be influenced by economic,	environmental,				
trade and researc	h policy.					
MODULE 3:	Engineering for Energy conservation:	5 Hours				
Concept of Gre	en Building and Green Architecture; Green building concepts (Green building				
encompasses eve	erything from the choice of building materials to where a building is	s located, how it				
is designed and	operated); LEED ratings; Energy Audit of facilities and optimiz	ation of energy				
consumption.						
MODULE 4:	Ecology:	5 Hours				
Ecosystems- Components, types, flow of matter and energy in an ecosystem; Community ecology-						
Characteristics, frequency, life forms, and biological spectrum; Ecosystem structure- Biotic and a-						
biotic factors, food chain, food web, ecological pyramids.						
MODULE 5:	Environmental Impact Assessment:	7 Hours				

Evolution of EIA; EIA at project; Regional and policy levels; Strategic EIA. EIA process; Screening and scoping criteria; Rapid and comprehensive EIA; Specialized areas like environmental health impact assessment; Environmental risk analysis. Case studies on EIA.

Books:

- 1. Boyle, Godfrey (2004), Renewable Energy (2nd edition). Oxford University Press.
- 2. Boyle, Godfrey, Bob Everett, and Janet Ramage (Eds.) (2004), Energy Systems and Sustainability: Power for a Sustainable Future. Oxford University Press.
- 3. Larry Canter "Environmental Impact Assessment: Engineering Principles and Management Issues" Second Edition, MGH.
- 4. Chris Wood "Environmental Impact Assessment: A Comparative Review" 2nd Edition, Pearson Education.
- 5. M. Dash, "Fundamentals of Ecology" Tata McGraw-Hills, India.
- 6. Arthur P.J. Mol, David A Sonnenfeld, Gert Spaargaren (Editors) "The Ecological Modernization Reader Environmental Reform in Theory and Practice" Routledge.

	PROGRAM OUTCOMES (PO)										PH SI OUTC	ROGRA PECIFI COMES	M C (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	I	-	3	3	I	I	-	I	2			
CO2	3	2	-	-	-	3	3	-	-	-	-	2			
CO3	3	3	2	2		2	3	-	-	-	-	2			
CO4	2	3	3	2	2	2	3	-	-	-	2	2			
CO5	3	2	-	-	-	3	3	2	-	-		2			
CO6	3	3	2	3	2	3	3	2	1	2	2	2			
	2.83	2.50	2.33	2.33	2.00	2.67	3.00	2.00	1.00	2.00	2.00	2.00			

Program: B. Tech. in Civil Engineering	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Introduction to Solid Mechanics	Subject Code:TIU-UCE-T223
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

- 1. Develop an understanding of deformation, strain, momentum balance, stress states, and their role in material modeling.
- 2. Apply Thermodynamics in Material Modeling
- 3. Analyze Mechanical Behavior of Structural Components
- 4. Integrate Experimental and Analytical Approaches

COURSE OUTCOME:

At the end of the semester Students would be able to

	Course Outcome	Bloom Taxonomy level
CO1	Recall fundamental concepts of stress, strain, elasticity, plasticity, and	K1
	material properties.	
CO2	Identify different types of loads, stresses, and deformations in structural	K1
	members under axial, shear, bending, and tensional forces.	
CO3	Explain the relationship between stress and strain, Hooke's Law, and	K2
	mechanical behaviour of materials under different loading conditions.	
CO4	Interpret shear force and bending moment diagrams and their role in	K2
	analyzing beam behaviour.	
CO5	Apply equilibrium and compatibility conditions to analyze axial,	K3
	bending, shear, and torsional stresses in beams, shafts, and columns.	
CO6	Solve problems related to deflection, thermal stresses, and failure	K3
	theories to ensure the safe design of structural components.	

MODULE 1:		6 Hours			
Deformation and	Strain: Description of finite deformation, Infinitesimal deformation	ation; Analysis of			
statically determi	nate trusses; Stability of dams, retaining walls and chimneys; S	Stress analysis of			
thin, thick and co	mpound cylinder;				
Module 2:		6 Hours			
Generalized state	of stress and strain: Stress and strain tensor, Yield criteria and the	heories of failure;			
Tresca, Von-Mise	es, Hill criteria, Heigh-Westerguard's stress space				
Module 3:		6 Hours			
Forces and Mor	nents Transmitted by Slender Members, Shear Force and E	Bending Moment			
Diagrams, Mome	ntum Balance, Stress States / Failure Criterion				
Module 4:		6Hours			
<i>Mechanics of Deformable Bodies:</i> Force-deformation Relationships and Static Indeterminacy, Uniaxial Loading and Material Properties, Trusses and Their Deformations, Statically Determinate and Indeterminate Trusses.					

Module 5:	6 Hours
Elasticity and Elasticity Bounds: S	Stress-strain-temperature Relationships and Thin-walled Pressure
Vessels, Stress and strain Transform	nations and Principal Stress, Failure of Materials

Module 6:		12Hours					
Bending: Stress and Strains; Defl	Bending: Stress and Strains; Deflections: Pure Bending, Moment- curvature Relationship, Beam						
Deflection, Symmetry, Superposition, and Statically Indeterminate Beams, Shear, Thermo							
elasticity, Energy methods, Variat	elasticity, Energy methods, Variational Methods; Strain energy, elastic, complementary and total						
strain energy, Strain energy of ax	strain energy, Strain energy of axially loaded bar, Beam in bending, shear and torsion; General						
energy theorems, Castigliano's theorem, Maxwell Bettie's reciprocal theorem; Virtual work and							
unit load method for deflection, Application to problems of beams and frames.							
M. J. J. 7.		2 11					

Module 7:	3 Hours	
Stability of columns, Euler's form	nula, end conditions and effective length fac	ctor, Columns with
eccentric and lateral load.		
TOTAL LECTURES		45 Hours

Text/Reference Books

- 1. Subhash C Sharma &Gurucharan Singh (2005), "Civil Engineering Drawing", Standard Publishers.
- 2. Ajeet Singh (2002), "Working with AUTOCAD 2000 with updates on AUTOCAD 2001", Tata- Mc Graw-Hill Company Limited, New Delhi.
- 3. Sham TickooSwapna D (2009), "AUTOCAD for Engineers and Designers", Pearson Education.
- 4. Venugopal (2007), "Engineering Drawing and Graphics + AUTOCAD", New Age International Pvt. Ltd., (Corresponding set of) CAD Software Theory and User Manuals.

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	2	2	2			1						
CO2	3	2	2	2	3	2			1						
CO3	3	2	3	2	3	2			1						
CO4	3	2	3	2	3	1			1						
CO5	3	2	3	2	3	3			1						
CO6	3	2	3	2	3	3			1						
	3	2	2.5	2	2.83	2.17			1						

Program: B. Tech. in Civil Engineering	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Mechanics of Materials	Subject Code:TIU-UCE-T241
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 2

- 1. Understand the Fundamentals of Continuum Mechanics
- 2. Develop Material Modeling Techniques Using Thermodynamics
- 3. Analyze Structural Behavior Through Mechanics of Materials
- 4. Bridge Experimental and Analytical Approaches in Material Behavior

COURSE OUTCOME:

	Course Outcome	Bloom
		Taxonomy
		level
CO1	Recall fundamental concepts of stress, strain, elasticity, plasticity, and	K1
	material properties.	
CO2	Identify different types of loads, stresses, and deformations in structural	K1
	members under axial, shear, bending, and tensional forces.	
CO3	Explain the relationship between stress and strain, Hooke's Law, and	K2
	mechanical behaviour of materials under different loading conditions.	
CO4	Interpret shear force and bending moment diagrams and their role in	
	analyzing beam behaviour.	K2
CO5	Apply equilibrium and compatibility conditions to analyze axial, bending,	K3
	shear, and torsional stresses in beams, shafts, and columns.	
CO6	Solve problems related to deflection, thermal stresses, and failure theories to	K3
	ensure the safe design of structural components.	

MODULE 1:				6 Hours		
Deformation and Strain: Description of finite deformation, Infinitesimal deformation; Analysis of						
statically determi	nate	trusses; Stab	bility of dams, retaining walls and chimneys;	Stress analysis of		
thin, thick and compound cylinder;						
Module 2:				6 Hours		
Generalized state	of st	ress and stra	in: Stress and strain tensor, Yield criteria and	theories of failure;		
Tresca, Von-Mise	es, Hi	ll criteria, He	eigh-Westerguard's stress space			
Module 3:				6 Hours		
Forces and Mor	nents	Transmittee	d by Slender Members, Shear Force and	Bending Moment		
Diagrams, Mome	ntum	Balance, Str	ress States / Failure Criterion	-		
Module 4:				6Hours		
Mechanics of D	eforn	nable Bodie	s: Force-deformation Relationships and Sta	tic Indeterminacy,		
Uniaxial Loading	and	Material Pro	operties, Trusses and Their Deformations, Stat	ically Determinate		
and Indeterminate	e Trus	sses.				
Module 5:				6 Hours		
Elasticity and Elasticity Bounds: Stress-strain-temperature Relationships and Thin-walled Pressure						
Vessels, Stress and strain Transformations and Principal Stress, Failure of Materials						
Module 6:				12Hours		

Bending: Stress and Strains; Deflections: Pure Bending, Moment- curvature Relationship, Beam Deflection, Symmetry, Superposition, and Statically Indeterminate Beams, Shear, Thermo elasticity, Energy methods, Variational Methods; Strain energy, elastic, complementary and total strain energy, Strain energy of axially loaded bar, Beam in bending, shear and torsion; General energy theorems, Castigliano's theorem, Maxwell Bettie's reciprocal theorem; Virtual work and unit load method for deflection, Application to problems of beams and frames.

······································	- F	
Module 7:		3 Hours
Stability of columns, Euler's form	nula, end conditions and effective length factor	or, Columns with
eccentric and lateral load.		
TOTAL LECTURES		45 Hours

Text/Reference Books:

- 1. Norris, C.H. and Wilber, J. B. and Utku, S. "Elementary Structural Analysis" Mc Graw Hill, Tokyo, Japan.
- 2. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.
- 3. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi, India.
- 4. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall, 2004
- 5. Crandall, S. H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. 2nd ed. New York, NY: McGraw Hill, 1979
- 6. Gere, J. M., and S. P. Timoshenko. *Mechanics of Materials*. 5th ed. Boston: PWS Kent Publishing, 1970.
- 7. Ashby, M. F., and D. R. H. Jones. *Engineering Materials, An Introduction to their Properties and Applications.* 2nd ed. Butterworth Heinemann.
- 8. Collins, J. A. Failure of Materials in Mechanical Design. 2nd ed. John Wiley & Sons, 1993.
- 9. Courtney, T. H. Mechanical Behavior of Materials. McGraw-Hill, 1990.
- 10. Hertzberg, R. W. *Deformation and Fracture Mechanics of Engineering Materials*. 4th ed. John Wiley & Sons, 1996.
- 11. Nash, W. A. Strength of Materials. 3d ed. Schaum's Outline Series, McGraw-Hill, 1994.

			I	PROGRAM SPECIFIC OUTCOMES (PSO)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	2	2	2	-	-	1	-	I	-			
CO2	3	2	2	2	3	2	-	-	1	-	-	-			
CO3	3	2	2	2	3	2	-	-	1	-	-	-			
CO4	3	2	3	2	3	1	-	-	1	-	-	-			
CO5	3	2	3	2	2	3	-	-	1	-	-	-			
CO6	3	2	3	2	3	3	-	-	1	-	-	-			
	3.00	2.17	2.33	2.00	2.67	2.17	-	-	1.00	-	-	-			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 3 rd Sem.
Course Title: Concrete Technology	Subject Code: TIU-UCE-T243
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. Understand the behaviour of fresh and hardened concrete.
- 2. Be aware the recent developments in concrete technology
- 3. Recognize factors affecting the strength, workability and durability of concrete
- 4. Impart the methods of proportioning of concrete mixtures

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify the properties of concrete ingredients and explain their role in the production, mixing, compaction, and curing of concrete	K1
CO2	Explain the properties of fresh and hardened concrete, including defects, behavior under different stresses, and time-dependent effects like creep and shrinkage.	K2
CO3	Apply c oncrete mix design principles considering cost, specifications, and environmental conditions.	К3
CO4	Analyzequality control measures and the behavior of concrete in extreme environmental conditions.	К3
CO5	Interpret the significance of various concrete testing methods, including destructive and non-destructive tests.	K2
CO6	Identify the characteristics and applications of special concretes, including fiber-reinforced and polymer concrete, and assess concrete deterioration and repair methods	K1

MODULE 1:	CONCRETE 9 Hou										
Properties of ingredients, tests, Production of concrete, different types of concrete-Self healing concrete, fiber reinforced concrete etc, mixing, compaction curing of concrete.											
MODULE 2:	PROPERTIES OF FRESH CONCRETE	9 Hours									
Defects in Conce and bond, Influe shrinkage and fat	rete, Concrete additives.; Behavior of concrete in tension and con- nce of various factors on test results, Time dependent behavior of igue in concrete.	npression, shear concrete -creep,									
MODULE 3:	CONCRETE MIX DESIGN	9 Hours									
Proportioning of concrete mixes, basic considerations, cost specifications, factors in the choice of mix proportion, different method of mix design. Assignment on concrete mix design.											

TECHNO INDIA UNIVERSITY

WESTBENGAL

MODULE 4:

QUALITY CONTROL, BEHAVIOR OF CONCRETE IN EXTREME ENVIRONMENT

9 Hours

Temperature problem in concreting, hot weather, cold weather and under water conditions, Resistance to freezing, Sulphate and acid attack, efflorescence, fire resistance in concrete; Inspection and testing of concrete- Concrete cracking, types of cracks, causes and remedies Nondestructive tests on concrete, Chemical tests on cement and aggregates.

MODULE 5:	CHEMICAL TESTS ON CEMENT AND AGGREGATES	9 Hours
Special concrete Polymer concrete rehabilitation.	types and specifications, Fibre reinforced and steel Fiber reinforced and steel Fiber reinforced and its preventer, Use of admixtures; Deterioration of concrete and its preventer,	forced concrete, tion Repair and
TOTAL LECTI	IDES	45 Hours

Books:

- 1. Neville A.M. "Properties of Concrete", Trans-Atlantic Publications, Inc.; 5e, 2012.
- 2. Job Thomas., "Concrete Technology", Cenage learning.
- 3. R. Santhakumar., "Concrete Technology", Oxford Universities Press, 2006.
- 4. Shetty M. S., "Concrete Technology", S. Chand & Co., 2006.
- 5. Mehta and Monteiro, "Concrete-Micro structure, Properties and Materials", McGraw HillProfessional.
- 6. Neville A. M. and Brooks J. J., "Concrete Technology", Pearson Education, 2010.
- 7. Lea., "Chemistry of Cement and Concrete"., Butterworth-Heinemann Ltd, 5e, 2017.
- 8. Bungey, Millard, Grantham "Testing of Concrete in Structures" Taylor and Francis, 2006.

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)			
	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3		
CO1	3	2				I	-	I	-	-	-	1					
CO2	3	2	1			-	-	-	I	-	-	1					
CO3	3	3	2	2	2	-	1	-	-	-	-	2					
CO4	3	3	2	2	2	2	3	-	-	-	-	2					
CO5	3	3	2	2	3	-	-	-	-	-	-	2					
CO6	3	2	2	2	2	2	3	-	-	-	-	2					
	3	2.5	1.8	2	2.25	2	2.3					1.6					

Course Title : Introduction to Solid Mechanics Lab	Subject Code: TIU-UCE-L245
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

The objective of the lab is to perform experiments which are related to Mechanics of Solid subject in order to understand the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents with the help of different mechanical equipment which students study in theory. We make students to perform different practical like Simple Beam, Different Lifting Machines, Tension and Compression test, Force and Force Systems, Moment of Inertia of Fly Wheel, Coefficient of Static Friction etc.

COURSE OUTCOME:

Sl. No.	Course Outcome	Bloom Taxono my level
CO1	Recall the fundamental concepts of stress, strain, elasticity, and mechanical properties of materials through experimental observations.	K1
CO2	Identify different testing equipment and procedures for evaluating material behavior under various loading conditions.	K1
CO3	Explain the working principles of testing machines used for tensile, compression, bending, and torsion tests.	K2
CO4	Interpret experimental data to determine mechanical properties such as Young's modulus, Poisson's ratio, and shear modulus.	K2
CO5	Apply experimental methods to analyze the stress-strain response of materials under different loading conditions.	K3
CO6	Conduct laboratory experiments, record data systematically, and validate theoretical concepts with practical results.	K3

Module 1	odule 1 Tension and Compression Testing											
Tension test on mild steel, Compression test on wood or concrete, Stress-strain behavior,												
Young's modulus determination.												
Module 2	Bending and Shear Testing	9 Hours										
Bending test on cantilever and simply supported beams (Steel/Wood), Shear test on different materials, Load-deflection behavior.												
Module 3	Torsion and Hardness Testing	9 Hours										
Torsion test on circular shafts, Determination of torsional rigidity, Hardness tests using Brinell and Rockwell methods.												
Module 4	Impact and Spring Testing	9 Hours										

TECHNO INDIA UNIVERSITY

WESTBENGAL

Impact test using Izod/Charpy methods, Spring test for stiffness and energy absorption, Load-deflection analysis of springs.

Module 5Strain Measurement and Advanced Testing9 H									
Verification of Maxwell's Reciprocal Theorem, Deflection test on a continuous beam,									
Use of electrical resistance strain gauges for strain measurement.									
TOTAL		45 Hours							

Text/Reference Books:

- 1. Norris, C.H. and Wilber, J. B. and Utku, S. "Elementary Structural Analysis" Mc Graw Hill, Tokyo, Japan.
- 2. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.
- 3. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi, India.
- 4. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall, 2004
- 5. Crandall, S. H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. 2nd ed. New York, NY: McGraw Hill, 1979
- 6. Gere, J. M., and S. P. Timoshenko. *Mechanics of Materials*. 5th ed. Boston: PWS Kent Publishing, 1970.
- 7. Ashby, M. F., and D. R. H. Jones. *Engineering Materials, An Introduction to their Properties and Applications.* 2nd ed. Butterworth Heinemann.
- 8. Collins, J. A. Failure of Materials in Mechanical Design. 2nd ed. John Wiley & Sons, 1993.
- 9. Courtney, T. H. Mechanical Behavior of Materials. McGraw-Hill, 1990.
- 10. Hertzberg, R. W. *Deformation and Fracture Mechanics of Engineering Materials*. 4th ed. John Wiley & Sons, 1996.
- 11. Nash, W. A. Strength of Materials. 3d ed. Schaum's Outline Series, McGraw-Hill, 1994.

]	PROGRAM SPECIFIC OUTCOMES (PSO)											
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	3	3	1	2	2	2	0	0	1	0	0	0			
CO2	3	2	2	2	3	2	0	0	1	0	0	0			
CO3	3	2	2	2	3	2	0	0	1	0	0	0			
CO4	3	2	3	2	3	1	0	0	1	0	0	0			
CO5	3	2	3	2	2	3	0	0	1	0	0	0			
CO6	3	2	3	2	3	3	0	0	1	0	0	0			
	3.00	2.17	2.33	2.00	2.67	2.17	0.00	0.00	1.00	0.00	0.00	0.00			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 3 rd Sem.				
Course Title: Concrete Technology Lab	Subject Code: TIU-UCE-L243				
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5				

Enable the student to:

- 1- Effectively link theory with practice and application and to demonstrate background of the theoretical aspects.
- 2- Generate and analyze data using experiments and to apply elements of data statistics.
- 3- Solve problems including design elements and related to their course work.
- 4- Facilitate the understanding of the behavior of construction materials.
- 5- Impart the methods of proportioning of concrete mixtures.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify and perform standard tests on cement, including specific gravity, fineness, soundness, consistency, and setting time.	K1
CO2	Conduct compressive strength tests on cement mortar cubes and interpret the results.	K2
CO3	Perform tests on fine aggregates, including specific gravity, bulking, fineness modulus, and bulk density, and analyze the results.	K3
CO4	Conduct sieve analysis, specific gravity, fineness modulus, and bulk density tests on coarse aggregates.	K3
CO5	Determine the workability of concrete using Slump, Compacting Factor, and Vee-Bee tests and interpret the findings.	K2
CO6	Design concrete mix proportions based on test results and apply mix design principles.	K3

COURSE CONTENT:

MODULE 1:TESTS ON CEMENT10 HoursDetermination of Specific Gravity, Fineness, Soundness, Normal Consistency, Initial and Final setting
time on cement. Determination of Compressive Strength on cement mortar cubes.10 Hours

MODULE 2:	TESTS ON FINE AGGREGATE	10 Hours
Determination of	f Specific Gravity, Bulking, Fineness Modulus, Bulk Density of fine Aggr	egate.

MODULE 3:	Τ	TESTS ON]	11	Hours							
Determination Aggregate.	of	Specific	Gravity,	Sieve	Analysis,	Fineness	Modulus,	Bulk	densi	ty of	f (Coarse

MODULE 4: TESTS ON CONCRETE

Determination of workability of concrete by Slump Test, Compacting Factor test, Vee-Bee test. Determination of Compressive Strength of Concrete Cube Mould. Concrete mix design.Applicationin incorporating fly ash/ GGBS/ plastic waste/geopolymer concrete trials. NDT tests on cube moulds.

TOTAL LECTURES

45 Hours

14 Hours

Books:

- 1. H.S.Moondra, RajivGupta, "Laboratory Manual for Civil Engineering" CBS Publishers & Distributors Pvt. Ltd.
- 2. M.K.Pant, "Laboratory Manual for Civil Engineering Students" S.K.Kataria& Sons.
- 3. Shetty, M.S., Concrete Technology, Theory & Practice, S.Chand and Co, 2004.
- 4. Gambhir, M.L., Concrete Technology, Tata McGraw Hill, 2004.
- 5. Nevile, Properties of Concrete, Longman Publishers, 2004.

	PROGRAM OUTCOMES (PO)												PROG	RAM SPE COMES (ECIFIC PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	0	0	0	0	0	0	0	0	0	1			
CO2	3	2	0	2	0	0	0	0	0	0	0	1			
CO3	3	3	2	2	2	0	1	0	0	0	0	2			
CO4	3	3	2	2	2	0	0	0	0	0	0	2			
CO5	3	3	2	2	3	0	0	0	0	0	0	2			
CO6	3	2	3	2	3	0	2	0	0	0	0	2			
	3.00	2.50	1.50	1.67	1.67	0.00	0.50	0.00	0.00	0.00	0.00	1.67			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 3rd Sem.				
Course Title: Building Planning & Valuation	Subject Code: TIU-UCE-S219				
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1				

Enable the student to:

- 1. Understand the fundamental principles of building planning, design regulations, and standards.
- 2. Learn about different types of buildings, functional requirements, and space utilization.
- 3. Develop skills in valuation techniques, cost estimation, and financial assessment of buildings.
- 4. Gain knowledge of different methods for evaluating land, properties, and depreciation.
- 5. Apply principles of town planning and building bylaws for sustainable urban development.
- 6. Understand legal aspects related to property valuation and municipal regulations.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the principles of building planning and design regulations.	K2
CO2	Apply functional requirements and space utilization in building planning.	K3
CO3	Analyze different valuation methods and cost estimation techniques.	K4
CO4	Evaluate land and property values, including depreciation factors.	K5
CO5	Apply town planning concepts and building bylaws for sustainable development.	K3
CO6	Assess legal and municipal regulations related to property valuation.	K5

MODULE 1:		10 Hours							
Real estate valuation: Various Purposes of Valuation, Laws Related to Real Estate, Real Estate									
Case Laws, Laws General									
MODULE 2:		10 Hours							
Classification of	buildings - Principles of planning - Dimensions of buildings - Bu	ilding bye-laws							
for floor area rati	o, open spaces.								
MODULE 3:		10 Hours							
Orientation of bu	ildings - Lighting and Ventilation- Planning and preparing sketch	nes and working							
drawings of Resi	dential buildings (Flat and sloping roof).								
MODULE 4:		10 Hours							
Preparing a draw	ving of non –Residential building like Schools, Hostels, Hospital	s buildings, 3D							
BIM modeling.		_							
MODULE 5:		10 Hours							
Detailed worki	ng drawings of the component parts - Doors and Windows -	Roof Trusses -							
Staircases-Toile	its.								

MODULE 6:10 HoursBar Bending Schedule of Beam, Column, Slab, Stirrup, Foundation plan and cross section of
isolated footing.45 HoursTOTAL LECTURES45 Hours

Books:

- 1. Civil Engineering Drawing by M Chakraborty,
- 2. Civil Engineering Drawing by R.K.Dhawan, S.Chand Publication.
- 3. Real Estate Laws : Compendium of Indian Real Estate Laws by Dr. Adv. Harshul Savla
- 4. Real Estate Valuation by Dr. Adv. Harshul Savla (MRICS)
- 5. Real Estate Investing by Benedetto Manganelli

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	2	2	2	1	1	2	2	2			
CO2	2	2	3	2	2	2	2	1	1	2	2	2			
CO3	2	3	2	2	2	2	2	1	1	3	3	2			
CO4	2	3	2	3	2	2	2	2	1	3	3	2			
CO5	2	2	3	2	2	3	3	2	1	3	3	2			
CO6	2	2	3	2	2	3	2	3	1	3	3	2			
	2.17	2.33	2.50	2.00	2.00	2.33	2.17	1.67	1.00	2.67	2.67	2.00			

1 credit

TIU-UES-S281	Entrepreneurship Skill Development
--------------	------------------------------------

Syllabus

This course is designed to equip students with essential skills for career advancement, focusing on the latest software and technologies relevant to the civil engineering field, such as Building Information Modeling (BIM) and project management tools. Additionally, students will enhance their communication skills through presentations, report writing, and effective teamwork strategies, preparing them to excel in professional environments and collaborate efficiently in multidisciplinary teams. Emphasis will also be placed on networking and personal branding to help students effectively position themselves in the job market.

4TH SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: CASD-Civil Engineering- Valuation and Societal Impact	Subject Code: TIU-UCE-S222
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

- 1. To focus on principles of insurance and loss assessment
- 2. To familiarize the students with environmental issues in valuation
- 3. To create awareness of the importance of Civil Engineering and the impact it has on the society and at global levels
- 4. To raise awareness of the impact of Civil Engineering for the various specific fields of human endeavor
- 5. Need to think innovatively to ensure sustainability
- 6. To enrich students with competitive level knowledge

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental causes of structural deterioration, including material degradation, environmental effects, and loading conditions.	K2
CO2	Describe various assessment techniques, including non-destructive testing (NDT) and visual inspection, to evaluate structural damage.	K2
CO3	Apply appropriate repair and strengthening techniques for different types of structural defects based on engineering standards and best practices.	K3
CO4	Demonstrate the use of advanced materials, such as fiber-reinforced polymers (FRP) and high-performance concrete, for structural rehabilitation.	K3
CO5	Develop strategies for maintenance, retrofitting, and life-cycle enhancement of existing structures, ensuring safety and durability.	К3
CO6	Integrate sustainability concepts into structural rehabilitation, considering cost, environmental impact, and long-term performance.	К3

MODULE 1:	Real Estate Valuation	5 Hours						
Microeconomics (Theory, money and its function, savings and investments and components of								
economy), Professional and Bussiness Ethics & Standards, Valuation report writing, Book-keeping								
and accountancy								

MODULE 2:		5 Hours							
Introduction to	o Course and Overview; Understanding the past to look into t	the future: Pre-							
industrial revo	industrial revolution days, Agricultural revolution, first and second industrial revolutions, IT								
revolution; Re	cent major Civil Engineering breakthroughs and innovations; Pre-	esent day world							
and future proj	and future projections, Ecosystems in Society and in Nature; the steady erosion in Sustainability;								
Global warmin	ng, its impact and possible causes; Evaluating future requirement	ents for various							
resources; GIS	S and applications for monitoring systems; Human Developm	nent Index and							

TECHNO INDIA UNIVERSITY

BENGAL W E S Т

Ecological Footprint of India Vs other countries and analysis.

MODULE 3:

5 Hours

Understanding the importance of Civil Engineering in shaping and impacting the world. The ancient and modern Marvels and Wonders in the field of Civil Engineering; Future Vision for Civil Engineering.

MODULE 4:

5 Hours

Infrastructure - Habitats, Megacities, Smart Cities, futuristic visions; Transportation (Roads, Railways & Metros, Airports, Seaports, River ways, Sea canals, Tunnels (below ground, under water); Futuristic systems (ex, Hyper Loop)); Energy generation (Hydro, Solar (Photovoltaic, Solar Chimney), Wind, Wave, Tidal, Geothermal, Thermal energy); Water provisioning; Telecommunication needs (towers, above-ground and underground cabling); Awareness of various Codes & Standards governing Infrastructure development; Innovations and methodologies for ensuring Sustainability.

MODULE 5:

3 Hours

Environment-Traditional & futuristic methods; Solid waste management, Water purification, Wastewater treatment & Recycling, Hazardous waste treatment; Flood control (Dams, Canals, River interlinking), Multi-purpose water projects, Atmospheric pollution; Global warming phenomena and Pollution Mitigation measures, Stationarity and non-stationarity; Environmental Metrics & Monitoring; Other Sustainability measures; Innovations and methodologies for ensuring Sustainability.

MODULE 6:

5 Hours

Built environment–Facilities management, Climate control; Energy efficient built environments and LEED ratings, Recycling, Temperature/ Sound control in built environment, Security systems; Intelligent/ Smart Buildings; Aesthetics of built environment, Role of Urban Arts Commissions; Conservation, Repairs & Rehabilitation of Structures & Heritage structures; Innovations and methodologies for ensuring Sustainability

MODULE 7:

2 Hours Civil Engineering Projects - Environmental Impact Analysis procedures; Waste (materials, manpower, equipment) avoidance/ Efficiency increase; Advanced construction techniques for better sustainability; Techniques for reduction of Green House Gas emissions in various aspects of Civil Engineering Projects; New Project Management paradigms & Systems (Ex. Lean Construction), contribution of Civil Engineering to GDP, Contribution to employment(projects, facilities management), Quality of products, Health & Safety aspects for stakeholders; Innovations and methodologies for ensuring Sustainability during Project development; **30 Hours**

TOTAL LECTURES

Books:

- 1. Macroeconomics by N.Gregory Mankiw
- 2. Žiga Turk (2014), Global Challenges and the Role of Civil Engineering, Chapter 3 in: Fischinger M. (eds) Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society. Geotechnical, Geological and Earthquake Engineering, Vol. 32. Springer, Dordrecht.
- 3. Brito, Ciampi, Vasconcelos, Amarol, Barros (2013) Engineering impacting Social, Economical and Working Environment, 120th ASEE Annual Conference and Exposition
- 4. NAE Grand Challenges for Engineering (2006), Engineering for the Developing World, The

Bridge, Vol 34, No.2, Summer2004.

- 5. Allen M. (2008) Cleansing the city. Ohio University Press. Athens Ohio.
- 6. Ashley R., Stovin V., Moore S., Hurley L., Lewis L., Saul A. (2010). London Tideway Tunnels Programme Thames Tunnel Project Needs Report Potential source control and SUDS applications: Land use and retrofit options
- 7. http://www.thamestunnelconsultation.co.uk/consultation-documents.aspx
- 8. Ashley R M., Nowell R., Gersonius B., Walker L. (2011). Surface Water Management and Urban Green Infrastructure. Review of Current Knowledge. Foundation for Water Research FR/R0014
- 9. Barry M. (2003) Corporate social responsibility unworkable paradox or sustainable paradigm? Proc ICE Engineering Sustainability 156. Sept Issue ES3 paper 13550. p129-130
- 10. Blackmore J M., Plant R A J. (2008). Risk and resilience to enhance sustainability with application to urban water systems. J. Water Resources Planning and Management. ASCE. Vol. 134, No. 3, May.
- 11. Bogle D. (2010) UK's engineering Council guidance on sustainability. Proc ICE Engineering Sustainability 163. June Issue ES2p61-63
- 12. Brown R R., Ashley R M., Farrelly M. (2011). Political and Professional Agency Entrapment: An Agenda for Urban Water Research. Water Resources Management. Vol. 23, No.4. European Water Resources Association (EWRA) ISSN0920-4741.
- 13. Cavill S., Sohail M. (2003) Accountability in the provision of urban services. Proc. ICE. Municipal Engineer 156. Issue ME4 paper 13445, p 235-244.
- 14. Charles J A. (2009) Robert Rawlinson and the UK public health revolution. Proc ICE Eng History and Heritage. 162 Nov. Issue EH4. P 199-206.
- 15. General Studies Engineering Aptitude by R.K. Jain
- 16. Civil engineering objective types by S. S. Bhavikatti
- 17. Civil Engineering Thorough Objective Type Questions by Gupta S. P. .

]		PH SI OUTC	ROGRA PECIFI COMES	M C (PSO)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	1	2	1	0	1	1	2			
CO2	3	3	2	3	2	1	2	1	0	1	2	2			
CO3	3	3	3	3	3	2	2	1	1	2	3	3			
CO4	2	3	3	3	3	2	2	1	1	2	3	3			
CO5	2	3	3	3	3	3	3	2	1	2	3	3			
CO6	2	2	3	3	3	3	3	2	1	3	3	3			
	2.5	2.67	2.67	2.83	2.5	2	2.33	1.33	0.67	1.83	2.5	2.67			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.					
Course Title: Probability and Statistics	Subject Code:TIU-UMA-T202					
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3					

Enable the student to:

- 1. understand the basics of probability and statistical analysis
- 2. analyze the nature of problems solved with probability distribution
- 3. understand basic statistics, dispersion, regression and curve fitting technique

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	To apply the foundational principles of probability and to have an idea of basic statistical features of data	K4
CO2	To derive the probability of events, represent events as random variables and calculate their probabilities	K4
CO3	To formulate and analyze several well-known distributions, including Binomial, Poisson, Normal, Exponential Distributions etc., and understand their scope of application to real world problems	K4
CO4	To calculate Measures of central tendences and analyse data based on them	K4
CO5	To calculate Measures of dispersion – standard deviation, variance	K4
CO6	To analyzeobservations in terms of regression and curve fitting	K4

COURSE CONTENT:

MODULE 1:	PROBABILITY 25 Hours										
Probability: Classical, relative frequency and axiomatic definitions of probability, Mutually exclusive events, Independent events, conditional probability, Bayes' Theorem.Random Variables: Discrete and continuous random variables, probability mass, probability density and cumulative distribution functions, mathematical expectation, moments.Distributions: Uniform, Binomial, Geometric, Poisson, Negative binomial, Exponential, Normal											
distributions, Join	nt and marginal distribution.										
MODULE 2:	STATISTICS	20 Hours									
Graphical representation of data, Frequency distributions, Measures of central tendencies – mean, median, mode, Measures of dispersion – standard deviation, variance, Principle of Least Squares, curve fitting, regression analysis.											
TOTAL LECTU	IRES	45 Hours									

TOTAL LECTURES

Books:

- 1. Ravish R Singh, Mukul Bhatt Engineering Mathematics, McGraw-Hill Education
- 2. N G Das, Statistical Methods, McGraw-Hill

3. Sheldon M. Ross, Introiduction to Prpbability band Statistics for Engineers and Scientists, McGraw-Hill.

			Р		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	2	0	0	0	0	2	1	2			
CO2	3	3	1	3	2	0	0	0	0	1	1	2			
CO3	3	3	2	3	3	1	0	0	0	2	1	3			
CO4	3	3	1	2	2	0	0	0	0	2	1	2			
CO5	3	3	1	2	2	0	0	0	0	2	1	2			
CO6	3	3	2	3	3	1	1	0	0	3	2	3			
	3.00	2.83	1.33	2.50	2.33	0.33	0.17	0.00	0.00	2.00	1.17	2.33			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd yrYr., 4th Sem.					
Course Title: Fluid Mechanics	Subject Code: TIU-UCE-T234					
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3					

Enable the student to:

- 1. understand the properties of fluids and fluid statics
- 2. derive the equation of conservation of mass and its application
- 3. solve kinematic problems such as finding particle paths and stream lines
- 4. use important concepts of continuity equation, Bernoulli's equation and turbulence, and apply the same to problems
- 5. analyze laminar and turbulent flows
- 6. understand the various flow measuring devices

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall fundamental properties of fluids, types of fluids, and basic fluid statics concepts such as pressure and buoyancy.	K1						
CO2	Identify different types of fluid flows, forces acting on fluids, and keyK2principles governing fluid mechanics.K2							
CO3	Explain the concepts of hydrostatics, kinematics, and dynamics of fluid motion, including continuity, momentum, and energy equations.	K1						
CO4	Interpret the behavior of fluids under various conditions using Bernoulli's equation, flow measurements, and velocity distributions.	K3						
CO5	Apply fundamental fluid mechanics principles to analyze fluid flow in pipes, open channels, and hydraulic structures.	K1						
CO6	Solve practical engineering problems related to pressure measurement, flow rate estimation, and hydraulic machinery using fluid mechanics concepts.	K2						

COURSE CONTENT:

MODULE 1:Introduction7 HoursDimensions and units – Physical properties of fluids - specific gravity, viscosity, surface tension, vapour
pressure and their influences on fluid motion, pressure at a point, Pascal's law, Hydrostatic law -
atmospheric, gauge and vacuum pressures measurement of pressure. Pressure gauges, Manometers:
Differential and Micro Manometers.7 Hours

MODULE 2: Hydrostatics

Hydrostatic forces on submerged plane, Horizontal, Vertical, inclined and curved surfaces – Center of pressure.

MODULE 3: Fluid Kinematics

Overview: Suspension and Solution grout, Grouting equipment and methods, Grout design and layout, Grout monitoring schemes

MODULE 4: Measurement of Flow

Pitot tube, Venturi meter and Orifice meter – classification of orifices, small orifice and large orifice, flow over rectangular, triangular, trapezoidal and Stepped notches - –Broad crested weirs

8 Hours

7 Hours

7 Hours

MODULE 5:	DULE 5: Laminar Flow And Turbulent Flows8 Hours									
Reynold's experiment - Characteristics of Laminar & Turbulent flows, Shear and velocity distributions,										
Laws of Fluid fr	Laws of Fluid friction, Hagen-Poiseulle Formula, Flow between parallel plates, Flow through long tubes,									
hydrodynamical	ly smooth and rough flows.									
MODULE 6:	Boundary Layer Theory	8 Hours								
Boundary layer (BL) – concepts, Prandtl contribution, Characteristics of boundary layer along a thin flat										
plate, Vonkarman momentum integral										
TOTAL LECTURES 45 Hour										

Books:

- 1. Fluid Mechanics, P. N. Modi and S. M. Seth, Standard book house, New Delhi
- 2. A text of Fluid mechanics and hydraulic machines, R. K. Bansal Laxmi Publications (P) ltd., New Delhi

				PROGRAM SPECIFIC OUTCOMES (PSO)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	1	2	3	2	2	1	2	3	1			
CO2	1	1	2	1	1	3	1	2	1	3	2	2			
CO3	2	2	1	2	2	2	2	2	3	2	3	1			
CO4	1	1	2	1	2	3	1	2	1	2	1	2			
CO5	1	1	1	1	2	3	2	2	1	2	3	1			
CO6	2	2	1	2	2	2	1	2	1	2	2	2			
	1. 6	1. 5	1. 3	1. 4	2	2. 6	1. 5	1. 6	1. 5	2. 3	2. 5	2			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.					
Course Title: Structural Analysis-I	Subject Code: TIU-UCE-T236					
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4					

Enable the student to:

- 1- Equip the students with the comprehensive methods of structural analysis with emphasis on analysis of elementary structures.
- 2- Use the force and displacement methods of structural analysis with emphasis on analysis of rigid beams and frames.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify different types of structures and determine their stability by analyzing static and kinematic indeterminacy for trusses, beams, and frames.	K1
CO2	Explain the behavior of cables, suspension bridges, and three-hinged arches under different loading conditions.	K2
CO3	Determine the effects of moving loads on determinate beams, trusses, and three-hinged arches to find critical loading positions	K2
CO4	Describe fundamental principles of materials and structural design criteria for analyzing determinate and indeterminate structural systems	K1
CO5	Apply force and displacement methods, such as the theorem of three moments, slope deflection method, and moment distribution method, to analyze beams and frames	К3
CO6	Perform laboratory experiments to analyze determinate and indeterminate structures and interpret experimental data for validation of theoretical concepts.	К3

MODULE 1:	INDETERMINACY AND STABILITY	5 Hours						
Types of structures, Stability of structures, Static and Kinematic Indeterminacy of Trusses, Beams and Frames.								
MODULE 2:	CABLES AND ARCHES.	5 Hours						
Cables and Suspe	Cables and Suspension bridges, three hinged arches.							
MODULE 3:	INTRODUCTION TO ILD	5 Hours						
Moving loads for determinate beams; trusses and three hinged arches.								
MODULE 4:	MATERIALS AND STRUCTURAL DESIGN CRITERIA	5 Hours						

Introduction to the analysis and design of structural systems. Analyses of determinate and indeterminate trusses, beams, and frames, and design philosophies for structural engineering. Laboratory experiments dealing with the analysis of determinate and indeterminate structures;

MODULE 5: FORCE AND DISPLACEMENT METHOD 5 Hours

Use of Force and Displacement method for analysis of beams and frames. (Methods can be taken as: Theorem of three moments, Slope deflection method, moment distribution method and other methods, at least one from each category)

MODULE 6: TWO HINGED ARCH AND APPROXIMATE ANALYSIS 5 Hours

Two hinged arch, Approximate analysis of Multi bay Multistoried Portal frames: Cantilever method, Portal method. Substitute frame analysis. Method of Elastic Centre. Column analogy technique

MODULE 7:ILD FOR INDETERMINATE STRUCTURES5 Hours

Influence line diagram for Three-hinged and Two-hinged stiffening girders. Influence line diagram for indeterminate structures: Muller Breslau principle.

MODULE 8:	MATRIX METHODS OF STRUCTURAL ANALYSIS	5 Hours				
Stiffness matrix method; Application to simple problems of beams and frames; Flexibility matrix						
method; Applicat	tion to simple problems of beams and frames.					
MODULE 9:	PLASTIC ANALYSIS OF STRUCTURES	5 Hours				
D1 1 1 1						

MODULE 9.	I LASTIC AIVAL ISIS OF STRUCTURES	5 110u1 S
Plastic analysis o	f Structures: application to Beams and Portal frames.	
TOTAL LECT	URES	45 Hours

Books:

- 1. Gere and Timoshenko, Mechanics of materials, CBS. Publishers.
- 2. Kenneth Leet, Chia M Uang& Anne M Gilbert., Fundamentals of Structural Analysis, McGraw Hill.
- 3. R.Vaidyanathan and P.Perumal, Comprehensive Structural Analysis Volume I & II, Laxmi Publications (P) Ltd.
- 4. Wang C.K., Intermediate Structural Analysis, McGraw Hill.
- 5. Aslam Kassimali., Structural Analysis, Cenage Learning.
- 6. Chandramouli P N, Structural Analysis I –Analysis of Statically Determinate Structures, Yes DeePublishingPvtLtd.,Chennai,Tamil Nadu.
- 7. Devdas Menon, Structural Analysis, Narosa Publications.
- 8. Hibbeler., Structural Analysis, Pearson Education.
- 9. Kinney S., Indeterminate Structural Analysis, Oxford & IBH.
- 10. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, Printice Hall India.
- 11. Reddy C.S., Indeterminate Structural Analysis, Tata McGraw Hill.
- 12. Timoshenko S.P.& Young D.H., Theory of Structures, McGraw Hill.

TECHNO INDIA UNIVERSITY WESTBENGAL

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	-	-	-	-	-	-	-	-	1			
CO2	3	2	1	-	-	-	-	-	-	-	-	1			
CO3	3	3	1	-	-	-	-	-	-	-	-	1			
CO4	3	2	2	-	-	-	-	-	-	-	-	1			
CO5	3	3	2	2	1	-	-	-	-	-	-	2			
CO6	3	3	2	3	2	-	-	-	-	-	-	2			
	3	2.5	1.6	2.5	1.5							1.3			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Surveying and Geomatics	Subject Code: TIU-UCS-T226
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. understand the human learning aspects and primitives in learning process by computer
- 2. analyze the nature of problems solved with machine learning techniques
- 3. design and implement suitable machine learning technique for a given application

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall the surveying knowledge for the Civil Engineering construction.	K1		
CO2	Tell ideas on linear and angular measurements, levelling, and differential	K1		
	levelling.			
CO3	Explain sources of error for accurate and precise measurement to prepare	кı		
005	topographic maps.	K2		
CO4	Illustrate the procedure to calculate areas, volumes, and earthwork quantities	КJ		
04	from topographic maps	IX2		
CO5	Apply the concept of traversing using standard and modern age instruments for	K3		
COS	Civil Engineering construction.	КJ		
C06	Use of the modern software to forecast information related to the Civil	K3		
000	Engineering construction.	K3		

COURSE CONTENT:

MODULE 1:	Introduction to Surveying, Triangulation and Trilateration	9 Hours							
Definition, clas	Definition, classification and principles of surveying; introduction to chain surveying, compass								
surveying Prine	ciples, Linear, angular and graphical methods, Survey stations, Su	urvey lines-							
ranging, bearing	g of survey lines, levelling: Plane table surveying, Principles of levelli	ng- booking							
and reducing le	vels; differential, reciprocal leveling, profile levelling and cross section	ning. Digital							
and Auto Level,	Errors in levelling; contouring: Characteristics, methods, uses; areas an	d volumes.							
Theodolite surv	Theodolite survey: Instruments, Measurement of horizontal and vertical angle; Horizontal and								
vertical control	- methods -triangulation -network- Signals. Baseline - choices - instr	ruments and							
accessories - extension of base lines -corrections - Satellite station - reduction to centre - Inter									
visibility of heig	ght and distances - Trigonometric leveling- Axis single corrections.								

MODULE 2: Curves

Elements of simple and compound curves - Method of setting out- Elements of Reverse curve -Transition curve – length of curve – Elements of transition curve - Vertical curves

MODULE 3: Modern Field Survey Systems

Principle of Electronic Distance Measurement, Modulation, Types of EDM instruments, Distomat, Total Station - Parts of a Total Station - Accessories - Advantages and Applications,

Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems- Segments, GPS measurements, errors and biases, Surveying with GPS, COordinate transformation, accuracy considerations.

- 9 Hours

9 Hours

MODULE 4: Photogrammetry Surveying	9 Hours						
Introduction, Basic concepts, perspective geometry of aerial photograph, rel	ief and tilt						
displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension							
for photographic mapping- aerial triangulation, radial triangulation, methods; photographic							
mapping- mapping using paper prints, mapping using stereo plotting instruments, r	nosaics, map						
substitute							
MODULE 5: Remote Sensing	9 Hours						
Introduction -Electromagnetic Spectrum, interaction of electromagnetic radiation	on with the						
atmosphere and earth surface, remote sensing data acquisition: platforms and sensors;	visual image						
interpretation: digital image processing.	-						

TOTAL LECTURES

Books:

- 1. Manoj, K. Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011.
- 2. Bhavikatti, S.S., Surveying and Levelling, Vol. I and II, I.K. International, 2010.
- 3. Chandra, A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 4. Anji Reddy, M., Remote sensing and Geographical information system, B.S. Publications, 2001.

45 Hours

5. Arora, K.R., Surveying, Vol-I, II and III, Standard Book House, 2015.

	PROGRAM OUTCOMES (PO)											PR SH OU	PROGRAM SPECIFIC OUTCOME S (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	1	1	1	1	1	1	2	1			
CO2	3	2	2	2	1	1	1	1	1	1	1	1			
CO3	2	2	2	3	1	1	1	1	3	1	3	1			
CO4	2	2	2	2	3	1	2	1	3	2	2	1			
CO5	3	2	2	2	3	2	3	1	2	2	2	1			
CO6	3	2	2	2	3	1	2	2	3	3	3	1			
	2.6	2.2	2.0	2.3	2.0	0.6	1.6	1.2	2.2	1.7	2.2	1			

TECHNO INDIA UNIVERSITY WESTBENGAL

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Transportation Engineering	Subject Code: TIU-UCS-T228
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. understand the human learning aspects and primitives in learning process by computer
- 2. analyze the nature of problems solved with machine learning techniques
- 3. design and implement suitable machine learning technique for a given application

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Describe highway development and planning, Classification of roads, road development in India.	K1
CO2	Enumerate geometric design of highways, highway cross section elements; sight distance	K1
CO3	Estimate traffic Characteristics and level of service of road for congestion free traffic movement	K2
CO4	Explain the standard properties of pavement materials for Highway Construction	K2
CO5	Predict the critical points of different types of roads sustaining vehicular loads through mechanical analysis.	K3
CO6	Employ the knowledge of design standards for flexible and rigid pavements and its components	К3

COURSE CONTENT:

MODULE 1:Highway development and planning9 HoursClassification of roads, road development in India, Current road projects in India; highway alignment
and project preparation.9 Hours

MODULE 2: Geometric design of highways

Introduction; highway cross section elements; sight distance, design of horizontal alignment; design of vertical alignment; design of intersections, problems. Basic introduction to Railway engineering.

MODULE 3:Traffic engineering & control9 HoursTraffic Characteristics, traffic engineering studies, traffic flow and capacity, traffic regulation and
control; design of road intersections; design of parking facilities; highway lighting; problems.9

MODULE 4: Pavement materials

Materials used in Highway Construction- Soils, Stone aggregates, bituminous binders, bituminous paving mixes; Portland cement and cement concrete: desirable properties, tests, requirements for different types of pavements.

MODULE 5: Design of pavements

Introduction; flexible pavements, factors affecting design and performance; stresses in flexible pavements; design of flexible pavements as per IRC; rigid pavements- components and functions; factors

9 Hours

9 Hours

9 Hours

affecting design and performance of CC pavements; stresses in rigid pavements; design of concrete pavements as per IRC.

TOTAL LECTURES

45 Hours

Books:

- 1. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, 'Highway Engineering', Revised 10th Edition, Nem Chand & Bros, 2017.
- 2. Kadiyalai, L.R., 'Traffic Engineering and Transport Planning', Khanna Publishers.
- 3. Partha Chakraborty, 'Principles Of Transportation Engineering, PHIL earning,
- 4. Fred L. Mannering, Scott S. Washburn, Walter P. Kilareski, 'Principles of Highway Engineering and Traffic Analysis', 4th Edition, John Wiley.
- 5. Srinivasa Kumar, R, Textbook of Highway Engineering, Universities Press, 2011.
- 6. Paul H. Wright and Karen K. Dixon, Highway Engineering, 7th Edition, Wiley Student Edition, 2009.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1 2 3				
CO1	2	1	1	1	1	3	1	2	2	1	3	2					
CO2	3	3	2	2	1	1	1	1	3	1	1	1					
CO3	3	2	2	2	3	1	2	3	3	2	3	2					
CO4	3	3	3	3	2	1	1	1	1	1	2	2					
CO5	3	3	3	3	3	1	3	2	2	2	2	1					
CO6	3	3	3	2	2	3	3	3	2	1	2	2					
	2.83	2.50	2.33	2.17	2.00	1.67	1.83	2.00	2.17	1.33	2.17	1.67					

Program: B. Tech. in Civil Engineering	Year, Semester: 2 nd Yr., 3 rd Sem.				
Course Title:Environmental Engineering	Subject Code: TIU-UCE-T230				
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3				

Enable the student to:

- 1. Understand the fundamental principles of Environmental Engineering based on Fluid Mechanics, Biological, and Chemical Sciences.
- 2. Develop and apply basic and empirical equations for solving Environmental Engineering problems.
- 3. Analyze the interaction between fluid mechanics, biological processes, and chemical reactions in environmental systems.
- 4. Utilize scientific principles to design and evaluate Environmental Engineering applications.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the sources, characteristics, and quality requirements of water for different applications, along with water quality standards and indices.	K2
CO2	Describe water supply systems, including demand estimation, transmission, distribution, and treatment processes.	K2
CO3	Identify the characteristics of wastewater, conveyance methods, sewerage system design, and wastewater treatment processes.	K2
CO4	Explain air pollution sources, quantification methods, monitoring techniques, and control measures.	K2
CO5	Demonstrate knowledge of noise pollution measurement and control methods.	K3
O6	Explain municipal solid waste composition, collection, treatment, and disposal methods along with its environmental effects.	K2

MODULE 1:	Water Supply Engineering	12 Hours								
Sources of Water and Characteristic of water, quality requirement for different beneficial uses, Water quality standards, water quality indices, water safety plans, Water Supply systems, Need for planned water supply schemes, Water demand industrial and agricultural water requirements, Components of water supply system; Transmission of water, Distribution system, Various valves used in W/S systems, service reservoirs and design. Water Treatment (aeration, sedimentation, coagulation flocculation, filtration, disinfection)										
MODULE 2:	Waste-water Supply Engineering	12 Hours								
Quantity and Characteristics of Sewage, Sewage flow variations. Conveyance of sewage- Sewers, shapes design parameters, operation and maintenance of sewers; Sewerage, Sewer appurtenances, Design of sewerage systems. Small bore systems; Sewage and Sullage, Pollution due to improper disposal of sewage, National River cleaning plans, Wastewater treatment, aerobic and anaerobic treatment systems, suspended and attached growth systems, recycling of sewage – quality requirements for various purposes.										
MODULE 3:	Air Pollution:	6 Hours								

Composition and properties of air, Quantification of air pollutants, Monitoring of air pollutants, Air pollution- Occupational hazards, Urban air pollution, automobile pollution, Air quality standards, Control measures for Air pollution, construction and limitations.

MODULE 4:	Noise Pollution:	7 Hours								
Basic concept, measurement and various control methods for noise pollution.										
MODULE 5:	8 Hours									
Municipal solid v management: Co commercial esta biomedical waste ground health h recycle. Various	waste, Composition and various chemical and physical parameters illection, transport, treatment and disposal of MSW. Special MS blishments and other urban areas, solid waste from constru- es, Effects of solid waste on environment: effects on air, soil, wa azards. Disposal of solid waste-segregation, reduction at source disposal methods.	of MSW, MSW W: waste from ction activities, ater surface and e, recovery and								
TOTAL LECTURES										

Books:

- 1. MetCalf and Eddy. Wastewater Engineering, Treatment, Disposal and Reuse, Tata McGraw-Hill, NewDelhi
- 2. Integrated Solid Waste Management, Tchobanoglous, Theissen& Vigil. McGraw Hill Publication.
- 3. Peavy, H.s, Rowe, D.R, Tchobanoglous, G. Environmental Engineering, Mc-Graw Hill International Editions, New York1985.
- 4. Air Pollution, Rao & Rao. McGraw Hill Publication.
- 5. Environmental Engineering (Vol I), Water Supply Engineering, S.K. Garg, Khanna Publishers, New Delhi.
- 6. Environmental Engineering (Vol II), Wastewater Supply Engineering, S.K. Garg, Khanna Publishers, New Delhi.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	-	-	3	3	-	-	-	-	2			
CO2	3	2	2	-	-	3	3	-	-	-	-	2			
CO3	3	3	2	2	-	3	3	-	-	-	-	2			
CO4	2	2	-	2	-	3	3	2	-	-	-	2			
CO5	2	1	-	-	-	3	3	2	-	-	-	2			
CO6	3	3	2	3	2	3	3	2	1	2	2	2			
	3	2.17	2	2.33	2	3	3	2	1	2	2	2			

Program: B. Tech. in Civil Engineering	Year, Semester: 2ND Yr., 4th Sem.
Course Title: Transportation Engineering Lab	Subject Code: TIU-UCE-L280
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5

Enable the student to:

- 1. derive the equation of conservation of mass and its application
- 2. solve kinematic problems such as finding particle paths and stream lines
- 3. use important concepts of continuity equation, Bernoulli's equation and turbulence, and apply the same to problems
- 4. analyze laminar and turbulent flows
- 5. understand the various flow measuring devices

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall Tests on highway materials – Aggregates- Impact value, Los-Angeles	K1
	Abrasion value water absorption, Elongation & Flakiness Index.	
CO2	Identify Bitumen & bituminous materials: Specific gravity, penetration value,	K2
	softening point, loss on heating, Flash & Fire point test	
CO3	Explain the concepts of Stripping value test.	K1
CO4	Interpret Design of B.C. & S.D.B.C. Mix.	K3
CO5	Apply CBR Test, Marshal Stability Test	K1
CO6	Solve practical engineering problems related to Benkelman beam Test.	K2

COURSE CONTENT:

MODULE 1:	Tests on highway materials	7 Hours
Tests on highw	ay materials – Aggregates- Impact value, Los-Angeles Abrasion value wa	ater absorption,
Elongation & F	lakiness Index.(including recycled aggregates)	•
MODULE 2:	Bitumen & bituminous materials	7 Hours
Bitumen &	bituminous materials: Specific gravity, penetration value, softening point,	loss on
heating, Fla	sh & Fire point test.	
MODULE 3:	Stripping value test	7 Hours
the ratio of the	average uncovered or stripped area observed visually to the total area o	f aggregates in
each test, expres	ssed as a percentage.	
MODULE 4:	Design of B.C. & S.D.B.C. Mix	8 Hours
the ratio of the	average uncovered or stripped area observed visually to the total area o	f aggregates in
each test, expres	ssed as a percentage.	
MODULE 5:	CBR Test	8 Hours
CBR test, Corre	lation of CBR Test with Plate Load Test for Pavement Design	

BENGAL WES Τ

MODULE 6:	Marshal Stability Test	8 Hours	
The basic Mars	hall test consists essentially of crushing a cylinder of bituminous materia	al between two	
semi-circular test heads and recording the maximum load achieved (i.e. the stability) and the deflection at			
which the maximum load occurs (i.e. the flow), Tests on RCA in pavement construction.			
TOTAL LECT	URES	45 Hours	

Books:

- 1. Principles of Transportation Engineering by Chakroborty& Das, Prentice Hall, India.
- 2. Highway EnggbyS.K.Khanna& C.E.G. Justo, Nem Chand Bros., Roorkee.
- 3. Traffic Engg and Transport Planning byL.R.Kadiyali, Khanna Publishers, Delhi.
- 4. Principles of Transportation and Highway Engineering byG.V.Rao, Tata McGrawHill Publishing Co. Ltd. N.Delhi.
- 5. Traffic Engg. by Matson, T.M., Smith, W.S. and Hurd, F.W, McGraw-Hill Book Co., New York.

		PROGRAM OUTCOMES (PO)										PI	ROGRAM SP OUTCOMES	ECIFIC (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	1	2	3	2	2	1	2	3	1			
CO2	1	1	2	1	1	3	1	2	1	3	2	2			
CO3	2	2	1	2	2	2	2	2	3	2	3	1			
CO4	1	1	2	1	2	3	1	2	1	2	1	2			
CO5	1	1	1	1	2	3	2	2	1	2	3	1			
CO6	2	2	1	2	2	2	1	2	1	2	2	2			
	1.6	1. 5	1. 3	1. 4	2	2. 6	1. 5	1. 6	1. 5	2. 3	2. 5	2			

Program: B. Tech Civil Engineering	Year, Semester: 2 nd Yr., 4th Sem.
Course Title: Environmental Engineering Lab	Subject Code: TIU-UCE-L282
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

The objective of this course is to train the students to do practical experiments related to Environmental Engineering. To provide analysis of water and wastewater in terms of its physical, chemical and biological characteristics.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the physical characteristics of water	K2
CO2	Classify different types of solids in water	K2
CO3	Find total, calcium, and magnesium hardness and interpret their environmental impact.	K3
CO4	Find the optimum coagulant dose for water treatment	K3
CO5	Examine the biological characteristics of water	K3
CO6	Apply laboratory techniques for water quality assessment	K3

COURSE CONTENT:

MODULE 1:	Physical Characterization of water	6 Hours					
Turbidity, Elec	Turbidity, Electrical Conductivity, pH						
MODULE 2:	Analysis of solids content of water	6 Hours					
Dissolved, Sett	leable, Suspended & Total Solids etc						
Determination	of concentration of Iron in a given sample of water						
MODULE 3:	Alkalinity and acidity, Hardness	12Hours					
Total Hardness	e, Calcium and Magnesium Hardness.						
Determination	of carbonate, bi-carbonate and hydroxide alkalinity for a given sample	e of water					
Determination	of acidity for a given sample of water						
Determination	of concentration of Chlorides in a given sample of water						
		•					
MODULE 4:	Optimum coagulant dose	3 Hours					
Jar Test of wat	er sample.						
MODULE 5:	Biological Characteristics of water	12 Hours					
COD, DO, BO	D test, MPN test						
Module 6	Disinfection test of water	6 Hours					
Determination of the Chlorine Demand and Break-Point Chlorination for a given sample of water, UV							
disinfection, so	lar disinfection (SODIS)						
Total	Total 45 Hours						
Books:							

1. H.S.Moondra, RajivGupta, "Laboratory Manual for Civil Engineering" CBS Publishers & Distributors Pvt. Ltd.

2. M.K.Pant, "Laboratory Manual for Civil Engineering Students" S.K.Kataria& Sons.

	PROGRAM OUTCOMES (PO)										PF SI OU ES	ROG M PECI C UTCO 5 (PS	RA IFI OM SO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	1	3	2	1	1	2	1	2			
CO2	3	2	1	2	1	3	2	1	1	2	1	2			
CO3	3	3	2	3	2	3	2	2	2	2	2	3			
CO4	3	3	2	3	2	3	3	2	2	3	2	3			
CO5	3	3	2	3	2	3	3	2	2	3	2	3			
CO6	3	3	3	3	3	3	3	2	2	3	3	3			
	3	2.67	1.83	2.67	1.8 3	3	2.5	1.67	1.67	2.5	1.8 3	2.6 7			

Program: B. Tech. in Civil Engineering	Year, Semester: 2nd Yr., 4th Sem.
Course Title: Structural Analysis-I	Subject Code: TIU-UCE-T236
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

1- Equip the students with the comprehensive methods of structural analysis with emphasis on analysis of elementary structures.

2- Train the students with the force and displacement methods of structural analysis with emphasis on analysis of rigid beams and frames.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify different types of structures and determine their stability by analyzing static and kinematic indeterminacy for trusses, beams, and frames.	K1
CO2	Explain the behavior of cables, suspension bridges, and three-hinged arches under different loading conditions.	K2
CO3	Determine the effects of moving loads on determinate beams, trusses, and three-hinged arches to find critical loading positions	K2
CO4	Describe fundamental principles of materials and structural design criteria for analyzing determinate and indeterminate structural systems	K1
CO5	Apply force and displacement methods, such as the theorem of three moments, slope deflection method, and moment distribution method, to analyze beams and frames	К3
CO6	Perform laboratory experiments to analyze determinate and indeterminate structures and interpret experimental data for validation of theoretical concepts.	К3

COURSE CONTENT: MODULE 1: INDETERMINACY AND STABILITY **10 Hours** Types of structures, Stability of structures, Static and Kinematic Indeterminacy of Trusses, Beams and Frames. MODULE 2: CABLES AND ARCHES. 8 Hours Cables and Suspension bridges, three hinged arches. MODULE 3: **INTRODUCTION TO ILD** 8 Hours Moving loads for determinate beams; trusses and three hinged arches. MODULE 4: MATERIALS AND STRUCTURAL DESIGN CRITERIA 8 Hours

Introduction to the analysis and design of structural systems. Analyses of determinate and indeterminate trusses, beams, and frames, and design philosophies for structural engineering. Laboratory experiments dealing with the analysis of determinate and indeterminate structures;

MODULE 5:	FORCE AND DISPLACEMENT METHOD	11 Hours

Use of Force and Displacement method for analysis of beams and frames. (Methods can be taken as: Theorem of three moments, Slope deflection method, moment distribution method and other methods, at least one from each category)

TOTAL LECTURES

Books:

- 1. Gere and Timoshenko, Mechanics of materials, CBS. Publishers.
- 2. Kenneth Leet, Chia M Uang& Anne M Gilbert., Fundamentals of Structural Analysis, McGraw Hill.

45 Hours

- 3. R.Vaidyanathan and P.Perumal, Comprehensive Structural Analysis Volume I & II, Laxmi Publications (P) Ltd.
- 4. Wang C.K., Intermediate Structural Analysis, McGraw Hill.
- 5. Aslam Kassimali., Structural Analysis, Cenage Learning.
- 6. Chandramouli P N, Structural Analysis I Analysis of Statically Determinate Structures, Yes DeePublishingPvtLtd., Chennai, Tamil Nadu.
- 7. Devdas Menon, Structural Analysis, Narosa Publications.
- 8. Hibbeler., Structural Analysis, Pearson Education.
- 9. Kinney S., Indeterminate Structural Analysis, Oxford & IBH.
- 10. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, Printice Hall India.
- 11. Reddy C.S., Indeterminate Structural Analysis, Tata McGraw Hill.
- 12. Timoshenko S.P.& Young D.H., Theory of Structures, McGraw Hill.

		PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	-	-	-	-	-	-	-	-	-	1				
CO2	3	2	1	-	-	-	-	-	-	-	-	1				
CO3	3	3	1	-	-	-	-	-	-	-	-	1				
CO4	3	2	2	-	-	-	-	-	-	-	-	1				
CO5	3	3	2	2	1	-	-	-	-	-	-	2				
CO6	3	3	2	3	2	-	-	-	-	-	-	2				
	3	2.5	1.6	2.5	1.5							1.3				

TIU-UES-S282

Entrepreneurship Skill Development

1 credits

Syllabus

This course is designed to equip students with essential skills for career advancement, focusing on the latest software and technologies relevant to the civil engineering field, such as Building Information Modeling (BIM) and project management tools. Additionally, students will enhance their communication skills through presentations, report writing, and effective teamwork strategies, preparing them to excel in professional environments and collaborate efficiently in multidisciplinary teams. Emphasis will also be placed on networking and personal branding to help students effectively position themselves in the job market.

5TH SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 3 rd Yr., 5th Sem.
Course Title: Carrier Advancement & Skill	Subject Code:TIU-UTR-S307
Development (Disaster Preparedness & Planning)	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand basic concepts in disaster management.
- 2. Understand definitions and terminologies used in disaster management.
- 3. Understand types and categories of disasters.
- 4. Understand the challenges posed by disasters.
- 5. Understand impacts of disasters key skills.
- 6. Endow with knowledge for competitive exams

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall Key concepts of disasters, their various types, and the core principles of disaster risk management. Understanding how to classify disasters and	K1
	manage associated risks effectively.	
CO2	Identify Various natural and human-made disasters, their causes, and the	K2
	effects they have on society and infrastructure. Understanding how these	
	events impact.	
CO3	Explain Strategies for disaster preparedness, including early warning systems	K1
	and emergency response planning. Focusing on proactive measures to reduce	
	risks	
CO4	Interpret national and international disaster management frameworks, policies, and mitigation strategies.	K2
CO5	Apply risk assessment techniques and preparedness planning to minimize	K3
000	disaster impacts on communities and infrastructure.	
CO6	Develop various scenarios, incorporating safety protocols and sustainable	K1
	practices. Ensuring resilience through effective planning and long-term	
	solutions.	

COURSE CONTENT:

MODULE 1:	INTRODUCTION	7 Hours							
<i>Disasters:</i> Disasterst disasterst disasters: Disasterst earthquakes, tsur (industrial pollutransportation acc and coastal areaster)	sters classification; natural disasters (floods, draught, cyclon ami, landslides, coastal erosion, soil erosion, forest fires etc.); ma tion, artificial flooding in urban areas, nuclear radiation, c cidents, terrorist strikes, etc.); hazard and vulnerability profile of ecological fragility.	nes, volcanoes, nmade disasters chemical spills, India, mountain							
MODULE 2:	Disaster Impacts	7 Hours							
Classification: etc.); health, p	Classification: Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard								

etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters. climate change and urban disasters. MODULE 3: Disaster Risk Reduction 7 Hours

Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post-disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions,

MODULE 4:	Disasters, Environment and Development 8 Hours									
stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and										
the activities of	the activities of National Disaster Management Authority.									
MODULE 5:	MODULE 5: Sustainable and environmental friendly recovery									
Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land-use changes, urbanization etc.)										
MODULE 6:	Reconstruction and development methods.	8 Hours								
Sustainable and e	Sustainable and environmental friendly recovery; reconstruction and development methods.									
TOTAL LECTU	45 Hours									

Books:

- 1. <u>http://ndma.gov.in/(Home page of National Disaster Management Authority)</u>
- 2. <u>http://www.ndmindia.nic.in/</u>(National Disaster management in India, Ministry of Home Affairs).
- 3. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
- 4. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.
- 5. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation.
- 6. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June2003.
- 7. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva:IASC.
- 8. General Studies Engineering Aptitude by R.K. Jain
- 9. Civil engineering objective types by S. S. Bhavikatti
- 10. Civil Engineering Thorough Objective Type Questions by Gupta S. P.
- 11. Civil Engineering: Objective Type by J.K. Gupta and R.S. Khurmi

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	1	2	1	1	2	3	1	2	1	2				
CO2	2	1	2	1	2	2	1	2	2	1	2	3				
CO3	1	2	1	2	3	1	2	3	1	2	1	1				
CO4	2	1	2	1	1	2	1	1	2	1	3	2				
CO5	2	2	1	1	2	3	2	2	1	2	1	1				
CO6	1	1	2	2	1	1	1	3	2	1	1	2				
	1.5	1.5	1.5	1.6	1.5	1.65	1.5	2.4	1.5	1.6	1.5	1.9				

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Structural Analysis-II	Subject Code: TIU-UCE-T329
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

Enable the student to:

- 1- Equip the students with the comprehensive methods of structural analysis with emphasis on analysis of elementary structures.
- 2- Deliver the students with knowledge of analysis portal frames with approximate methods.
- 3- Furnish students with the idea of implementation of matrix method of structural analysis.
- 4- Develop the concept of ILD using qualitative method.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify the fundamental concepts of two-hinged arches, approximate analysis of multi-bay frames, and elastic center method	K1				
CO2	Explain the influence line diagrams for three-hinged and two-hinged stiffening girders and their application in structural analysis.	K2				
CO3	Apply the Muller-Breslau principle to derive influence line diagrams for indeterminate structures.	К3				
CO4	Analyze beams and frames using stiffness and flexibility matrix methods in structural analysis.	К3				
CO5	Interpret plastic analysis techniques and their application in beams and portal frames to determine collapse load.					
CO6	Use approximate and matrix methods to evaluate the behavior of multi-storied frames under different loading conditions.	К3				

COURSE CONTENT:

MODULE 1: TWO HINGED ARCH AND APPROXIMATE ANALYSIS	8 Hours						
Two hinged arch, Approximate analysis of Multi bay Multistoried Portal frames: Cantilever method,							
Portal method. Substitute frame analysis. Method of Elastic Centre. Column analogy technique							
MODULE 2: ILD FOR INDETERMINATE STRUCTURES	10 Hours						
Influence line diagram for Three-hinged and Two-hinged stiffening girders. Influence	line diagram for						
indeterminate structures: Muller Breslau principle.							
MODULE 3: MATRIX METHODS OF STRUCTURAL ANALYSIS	14 Hours						
Stiffness matrix method; Application to simple problems of beams and frames; I	Flexibility matrix						
method; Application to simple problems of beams and frames.							
MODULE 4: PLASTIC ANALYSIS OF STRUCTURES	13 Hours						
Plastic analysis of Structures: application to Beams and Portal frames.							
TOTAL LECTURES 45 Hour							

Books:

- 1. Gere and Timoshenko, Mechanics of materials, CBS. Publishers.
- 2. Kenneth Leet, Chia M Uang& Anne M Gilbert., Fundamentals of Structural Analysis, McGraw Hill.
- 3. R.Vaidyanathan and P.Perumal, Comprehensive Structural Analysis Volume I & II, Laxmi Publications (P) Ltd.
- 4. Wang C.K., Intermediate Structural Analysis, McGraw Hill.
- 5. Aslam Kassimali., Structural Analysis, Cenage Learning.
- 6. Chandramouli P N, Structural Analysis I –Analysis of Statically Determinate Structures, Yes DeePublishingPvtLtd.,Chennai,Tamil Nadu.
- 7. Devdas Menon, Structural Analysis, Narosa Publications.
- 8. Hibbeler., Structural Analysis, Pearson Education.
- 9. Kinney S., Indeterminate Structural Analysis, Oxford & IBH.
- 10. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, Printice Hall India.
- 11. Reddy C.S., Indeterminate Structural Analysis, Tata McGraw Hill.
- 12. Timoshenko S.P.& Young D.H., Theory of Structures, McGraw Hill.

	PROGRAM OUTCOMES (PO)												PROGRAM	I SPECIFIC O (PSO)	UTCOMES
	1	2	3	4	5	6	7	8	9	1 0	1 1	12	1	2	3
CO1	3	2	-	-	-	-	-	-	-	-	-	1			
CO2	3	2	1	-	-	-	-	-	-	-	-	1			
CO3	3	3	1	-	-	-	-	-	-	-	-	1			
CO4	3	2	2	-	-	-	-	-	-	-	-	1			
CO5	3	3	2	2	1	-	-	-	-	-	-	2			
CO6	3	3	2	3	2	-	-	-	-	-	-	2			
	3	2	1.6	2.5	1.5							1.3			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Design of RCC Structures	Subject Code: TIU-UCE-T321
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. Be able to perform analysis and design of reinforced concrete members and connections.
- 2. Be able to identify and interpret the appropriate relevant industry design codes.
- 3. Become familiar with professional and contemporary issues in the design and fabrication of reinforced concrete members.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall and describe fundamental concepts of Reinforced Cement Concrete (RCC), including materials, stress-strain behavior, and IS code provisions.	K1
CO2	Explain and interpret the principles of Working Stress Method (WSM) and Limit State Method (LSM) and their applications in RCC design.	K2
CO3	Differentiate between singly reinforced, doubly reinforced, and T-beam sections, and illustrate their behavior under bending and shear forces.	K2
CO4	Apply IS 456:2000 provisions to analyze and design RCC beams, slabs, staircases, and columns using the Limit State Method.	K3
CO5	Compute the reinforcement detailing, development length, anchorage, and shear reinforcement for various RCC structural elements.	K3
CO6	Design and sketch isolated footings, columns, and slabs for different loading conditions as per IS code guidelines.	K3

COURSE CONTENT :

8 Hours					
Principles of design of reinforced concrete members-Working stress, and Limit State method of					
design, Experimental design. Safety norms as per IS code guidelines					
8 Hours					
ending moment					
ngly reinforced					
17 Hours					
oment and shear					
forces; concepts of bond stress and development length.					
Analysis, design and detailing of singly reinforced rectangular, 'T' and doubly reinforced beam					
sections by limit state method.					

Design and detailing of slab panels as per IS code provisions. Design and detailing of continuous beams and slabs as per IS code provisions.

Design and detailing of dog-legged staircase as per IS code provisions. Design and detailing of reinforced concrete short columns of rectangular and circular cross-sections under axial load. Design of short columns subjected to axial load with moments (uniaxial and biaxial bending) – using SP 16.

MODULE 4:	Shallow foundations	12 Hours
Types; Design a columns as per IS	nd detailing of reinforced concrete isolated square and rectang S code provisions by limit state method.	ular footing for
TOTAL LECTU	JRES	45 Hours

Books:

- 1. R.C.C. Designs as per IS 456-2000 by Dr. B.C.Punmia, A.K. Jain and A.K.Jain.
- 2. Design of Reinforced Concrete Structures N.Subramanian.

		PROGRAM OUTCOMES (PO)										PI S OUTC	ROGRA PECIFI COMES	M C (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	0	0	0	1	0	0	1	0	2			
CO2	3	3	2	0	0	0	1	0	0	1	0	2			
CO3	3	3	2	1	1	0	1	0	0	1	0	2			
CO4	3	3	3	2	2	0	2	0	0	1	1	2			
CO5	3	3	3	2	2	0	2	0	0	1	1	2			
CO6	3	3	3	2	2	0	2	0	0	1	1	2			
	3	2.83	2.5	1.16	1.16	0	1.5	0	0	1	0.5	2			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Design of Steel Structures	Subject Code: TIU-UCE-T323
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Perform analysis and design of steel members and connections based on engineering principles and design standards.
- 2. Understand the behavior and design of steel structural systems under various loading conditions.
- 3. Familiarize with professional and contemporary issues related to steel structures, including sustainability and advancements in steel design.
- 4. Apply knowledge of codes and standards to ensure safety, stability, and serviceability in steel structure design.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Analyze and design steel members and connections considering strength, stability, and serviceability.	K2
CO2	Apply design principles for steel structural systems to ensure safety and efficiency.	K2
CO3	Evaluate load-carrying capacity and failure modes of steel structures under different loading conditions.	K3
CO4	Use relevant design codes and standards for designing steel structures.	K3
CO5	Assess the behavior of bolted and welded connections in structural components.	K3
CO6	Understand contemporary issues and sustainability in steel structure design and construction.	K3

COURSE CONTENT:

MODULE 1:	Introduction Advantages and disadvantages of steel as	5 Hours
	construction materia	
Use of steel tab	le (SP6-Part1); Types of loads on steel structure and its I. S. cod	de specification.
Geometrical prop	perties of gross and effective cross sections- Classification of Cross	s Sections as per
IS:800-2007. Sat	ety norms as per IS code guidelines.	
MODULE 2:	Plastic Analysis:	6 Hours
Methods- Ela	stic, Plastic and Advanced method of analysis based on IS: 800-	2007– Idealized
Stress vs. Str	ain curve- Requirements and Assumptions of Plastic method of	analysis-Shape
Factors-Colla	pse load.	
MODULE 3:	Limit State Design (L.S.M):	9 Hours
Design of Ter	usion Members by L.S.M. Design of Compression Members by	LSM Column
	iston memoens by Eistin, Design of compression memoens by	Libini, conum
Bases by L.S.I	M, Slab base and Gusseted base.	

TECHNO INDIA UNIVERSITY

BENGAL W EST

9 Hours

MODULE 4: **Design of Flexural Members by L.S.M:** Effective span of Beams, Design strength of bending, (Flexure), Limiting deflection of beams-Design of laterally supported Simple beams using single / double rolled steel sections.

MODULE 5: **Design of Connections and Detailing:**

9 Hours

Types of connections- Bolted, Riveted and Welded connections- Rigid and Flexible connections. Bolted Connection-Types of bolts-Bearing type Bolts-Nominal and Design shear strengths of bolts- Reduction factors for Long joints, Large grip lengths-Nominal and Design bearing strengths of bolts- Reduction factors for oversized and slotted holes- Nominal and Design tensile strengths (tension capacity) of bolts.- Welded Connection- Types of welds- Fillet welds- Minimum and maximum sizes- Effective length of weld- Fillet welds on inclined faces--Design strengths of shop/site welds– Butt welds– Effective throat thickness and effective length of butt weld.

MODULE 6:	Steel Roof Truss:	7 Hours
Types of steel	roof truss & its selection criteria, Calculation of panel point load	l for Dead load;
Live load and	wind load as per I.S. 875-1987 Analysis and Design of steel roof	truss. Design of
Angle purlin a	s per I. S. Arrangement of members at supports.	
TOTAL LECT	JRES	45 Hours

Books:

- 1. Design of Steel Structures by Limit State Method as per IS 800-2007 by S.S. Bhavikati.
- 2. Limit State Design of Steel Structures by S.K.Duggal.
- 3. Design of Steel Structures: Limit State Method by N.Subramanian.
- 4. Fundamentals of Structural Steel Design (Limit State Method as per IS 800-2007) by M.L.Gambhir.

			J	PROG	GRAN	MOU	JTCC	OMES	5 (PO)			PH SI OUTC	ROGRA PECIFI COMES	M C (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	2	1	1	0	1	2	1	2			
CO2	3	3	3	2	2	1	1	0	1	2	2	2			
CO3	3	3	3	3	2	1	1	0	1	2	2	2			
CO4	3	3	3	3	3	1	1	1	1	3	2	3			
CO5	3	3	3	3	3	1	1	1	1	3	2	3			
CO6	3	2	2	2	2	2	3	2	1	3	2	3			
	3.00	2.83	2.83	2.50	2.33	1.17	1.33	0.67	1.00	2.50	1.83	2.50			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5 th Sem.
Course Title: Geotechnical Engineering	Subject Code: TIU-UCE-T325
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. Learn the basic idea about different types of types of soil, their origin, formations and index properties.
- 2. Havev basic concepts of fundamental phenomenon like permeability, seepage, compaction, shear strength and consolidation
- 3. Solve any type slopes stability problems and will be able to know how soil report is prepared by performing soil exploration.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the basic properties of soil and classification systems.	K2
CO2	Determine soil properties through laboratory and field tests.	K3
CO3	Analyze permeability, seepage, and stresses in soil masses.	K4
CO4	Evaluate shear strength and consolidation characteristics of soil.	K5
CO5	Assess the bearing capacity and settlement of shallow and deep foundations.	K5
CO6	Design earth retaining structures and slope stability analysis.	K6

COURSE CONTENT:

MODULE 1:	Introduction	5 Hours		
Types of soils, their formation and deposition, Definitions: soil mechanics, soil engineering, rock mechanics, geotechnical engineering. Scope of soil engineering. Comparison and difference between soil and rock. Basic Definitions and Relationships-Soil as three-phase system in terms of weight, volume, voids ratio, and porosity. Definitions: moisture content, unit weights, degree of saturation, voids ratio, porosity, specific gravity, mass specific gravity, etc. Relationship between volume weight, voids ratio- moisture content, unit weight- percent air voids, saturation moisture content, moisture content- specific gravity etc. Determination of various parameters such as: Moisture content by oven dry method, pycnometer, sand bath method, torsional balance method, nuclear method, alcohol method and sensors. Specific gravity by density bottle method, pycnometer method, measuring flask method. Unit weight by water displacement method, submerged weight method, sort content method.				
MODULE 2:	Plasticity Characteristics of Soil	5 Hours		
Introduction to shrinkage limit, of activity and consistency lir classification, to classification sy different groups	definitions of: plasticity of soil, consistency limits-liquid limit plasticity, liquidity and consistency indices, flow & toughness ind sensitivity. Determination of: liquid limit, plastic limit and shrinka nits. Classification of Soils-Introduction of soil classification extural classification, unified soil classification system, Indian stem. Identification: field identification of soils, general characte	it, plastic limit, lices, definitions ge limit. Use of n: particle size n standard soil ristics of soil in		
MODULE 3:	Permeability of Soil	5 Hours		

Darcy's law, validity of Darcy's law. Determination of coefficient of permeability: Laboratory method: constant-head method, falling-head method. Field method: pumping- in test, pumping- out test. Permeability aspects: permeability of stratified soils, factors affecting permeability of soil. Seepage Analysis- Introduction, stream and potential functions, characteristics of flow nets, graphical method to plot flow nets.

MODULE 4:	Effective Stress Principle	2 Hours			
Introduction, effective stress principle, nature of effective stress, effect of water table. Fluctuations of effective stress, effective stress in soils saturated by capillary action, seepage pressure, quick sand condition.					
MODULE 5:	Compaction of Soil	3 Hours			
Introduction, th maximum dry d	eory of compaction, laboratory determination of optimum moist ensity. Compaction in field, compaction specifications and field co	ure content and ontrol.			
	Strassas in soils	5 Hours			
Introduction, st rectangular load Chart. Contact theory.	resses due to point load, line load, strip load, uniformly loade led area. Influence factors, Isobars, Boussinesq's equation, Newn pressure under rigid and flexible area, computation of displaceme	d circular area, nark's Influence ents from elastic			
MODULE 7:	Consolidation of Soil	5 Hours			
Introduction, co consolidation, s results, Terzagl consolidation se	spring analogy for primary consolidation, initial, prima spring analogy for primary consolidation, interpretation of co ni's theory of consolidation, final settlement of soil deposits, ettlement and secondary consolidation.	ry & secondary nsolidation test computation of			
MODULE 8:	Shear Strength	5 Hours			
Mohr circle and stresses,Mohr-C triaxial compres computation of	a its characteristics, principal planes, relation between major and Coulomb theory, types of shear tests: direct shear test, merits of c ssion tests, test behaviour of UU, CU and CD tests, pore pressur effective shear strength parameters, unconfined compression test, v	minor principal lirect shear test, re measurement, vane shear test.			
MODULE 9:	Stability of Slopes	5 Hours			
Introduction, type infinite slopes, we charts.	Introduction, types of slopes and their failure mechanisms, factor of safety, analysis of finite and infinite slopes, wedge failure Swedish circle method, friction circle method, stability numbers and charts.				
		-			
MODULE 10:	Soil Exploration	5 Hours			
Introduction, me sampling procee and advance soi	ethods of site exploration and soil investigation, methods of boring dures, trail pits, borings, penetrometer tests, analysis of borehole lo l exploration methods.	g, soil samplers, ogs, geophysical			
TOTAL LECTU	RES	45 Hours			

Books:

- 1. Soil Mechanics by Craig R.F., Chapman & Hall.
- 2. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (Civil and Environmental Engineering) by V.N.S. Murthy.
- 3. Fundamentals of Soil Engineering by Taylor, John Wiley & Sons

- 4. An Introduction to Geotechnical Engineering, by Holtz R.D. and Kovacs, W.D., Prentice Hall, NJ
- 5. Principles of Geotechnical Engineering, by Braja M. Das, Cengage Learning

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1	2	1	1	1	0	0	1	1	2				
CO2	3	3	2	3	2	1	1	0	0	2	2	2				
CO3	3	3	3	3	2	1	1	0	1	2	2	3				
CO4	3	3	3	3	3	2	1	0	1	2	2	3				
CO5	3	3	3	3	3	2	2	0	1	2	2	3				
CO6	3	3	3	3	3	3	2	0	1	2	2	3				
	3.00	2.83	2.50	2.83	2.33	1.67	1.33	0.00	0.67	1.83	1.83	2.67				

Program: B. Tech. in Civil Engineering	Year, Semester: 3RD Yr., 5th Sem.
Course Title: Ground Improvement Techniques	Subject Code:TIU-UCE-T341
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1. Understand the need and scope of ground improvement techniques for enhancing soil properties in geotechnical engineering applications.
- 2. Learn various mechanical, hydraulic, physical, and chemical methods used for soil stabilization and ground improvement.
- 3. Analyze the suitability of different ground improvement techniques based on soil conditions, project requirements, and environmental considerations.
- 4. Apply design principles and construction techniques for ground reinforcement, including geosynthetics, deep compaction, grouting, and drainage methods.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall fundamental concepts of problematic soils, ground improvement techniques, and soil stabilization methods.	K1
CO2	Identify various ground improvement methods such as mechanical, chemical, and biological stabilization techniques.	K2
CO3	Explain the principles of compaction, soil reinforcement, grouting, and drainage techniques used for ground modification.	K1
CO4	Interpret soil improvement methods for various site conditions, including expansive soils, liquefiable soils, and weak subgrades.	K1
CO5	Apply appropriate ground improvement techniques to enhance soil strength, reduce settlement, and improve load-bearing capacity.	K2
CO6	Design soil stabilization and reinforcement solutions for real-world geotechnical problems, ensuring safety and sustainability.	K2

COURSE CONTENT:

MODULE 1:	Insitu densification	7 Hours								
Introduction, C	Introduction, Compaction: methods and controls Densification of granular soil: Vibration at									
ground surface,	Impact at ground surface, Vibration at depth (Vibroflotation), Impact	at depth								
MODULE 2:	Densification of Cohesive Soils	7 Hours								
Over view: Ge	Over view: Geotextiles as separators, reinforcement. Geotextiles in filtration and drainage,									
Geotextiles in er	rosion control.	_								
MODULE 3:	Grouting:	7 Hours								
Over view: Sus	pension and Solution grout, Grouting equipment and methods, Grou	t design and								
layout, Grout monitoring schemes										
MODULE 4:	Soil stability	8 Hours								

Reinforced ea	rth fundamentals, Soil nailing								
MODULE 5:	In situ densification	8 Hours							
Impact at ground	Impact at ground surface, Vibration at depth (Vibroflotation), Impact at depth								
MODULE 6:	Geotextiles.	8 Hours							
Geotextiles in fi	tration and drainage, Geotextiles in erosion control, Use of Recycled	Plastics and							
Natural Fibres i	Natural Fibres in Geotextiles, Case Study: Geotextiles in Major Infrastructure Projects (Indian								
Context)									
TOTAL LECT	URES	45 Hours							

Books:

- 1. Foundation Analysis & Design J.E. Bowels McGraw Hill
- 2. Principles of Foundation Engineering B.M. Das Thomson Book
- 3. Foundation Design Manual N. V. Nayak Dhanpat Rai Publication Pvt. Ltd
- 4. Construction and Geotechnical methods in foundation engineering R.M. Koener McGraw Hill
- 5. Technology in tunnelling and dam construction A.V. Shroff. & D.L. hah Oxford and IBH Publishing Co.Pvt.Ltd
- 6. Reinforced Earth T S Ingold Thoam Telford
- 7. Designing with Geosynthetics R M Koerner Prentice Hall

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	2	3	1	2	2	2	1	3	2			
CO2	2	1	1	2	2	1	1	2	1	2	1	1			
CO3	1	2	3	1	3	2	2	1	2	1	3	2			
CO4	2	2	1	2	2	1	1	2	1	2	2	1			
CO5	1	1	2	1	3	2	2	1	2	1	3	2			
CO6	1	2	1	2	3	2	1	1	2	1	3	2			
	1.33	1.67	1.50	1.67	2.67	1.50	1.50	1.50	1.67	1.33	2.50	1.67			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5 th Sem.
Course Title: Fluid Mechanics Lab	Subject Code: TIU-UCE-L331
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

Enable the student to:

- 1. To give the detail information of various devices related with fluids.
- 2. To deliver the tests related with viscosity and pressure measurement.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Understand the Bernoulli's theorem for governing fluid flows.	K2
CO2	Calculate the buoyancy force.	K1
CO3	Calculate the different fluid properties using various type of equipment's like	K3
COS	measurement of flow, pressure velocity and head loss.	
CO4	Understand the basic properties and characteristics of incompressible fluid in	K1
C04	laboratory.	
CO5	Gain knowledge about weirs, notches, design and calculate discharge over barrages	K2
CO6	Gain knowledge in hydraulic machineries, pumps and turbines.	K1

COURSE CONTENT

MODULE 1:	INTRODUCTION	3 Hours								
Measurement of viscosity, Study of Pressure Measuring Device										
MODULE 2:	CONCEPT LEARNING	12 Hours								
Stability of Fl	oating Body, Hydrostatics Force on Flat Surfaces/Curved Surfaces,	Verification of								
Bernoulli's The	orem									
MODULE 3:	VENTURIMETER & ORIFICEMETER	9 Hours								
Venturimeter ar	nd Orificemeter, Impacts of jets									
MODULE 4:	OCF, NOTCH	9 Hours								
Velocity Distrib	oution in Open channel flow, Calibration of Notch									
MODULE 5:	WEIR & GVF	6 Hours								
Measurement of	f water surface profile for flow over Broad crested weir, Gradually Varied	Flow								
MODULE 6:	HYDRAULIC JUMP, GATE	6 Hours								
Hydraulic Jump, Flow under Sluice Gate										
TOTAL LECT	URES	45 Hours								

Books:

- 1. Fuild mechanics and hydraulic machines by R.K.Rajput. S. Chand publication.
- 2. A text book on fluid mechanics and hydraulic machines by R.K Bansal.

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1	1	1	1	1	1	2	1	1	1	3				
CO2	1	1	1	2	1	1	1	1	1	1	2	1				
CO3	3	1	1	1	3	1	1	1	1	3	1	1				
CO4	1	1	1	1	1	1	1	2	1	1	1	3				
CO5	2	3	1	3	3	3	3	1	3	1	1	3				
CO6	2	2	3	3	3	2	3	1	3	1	1	3				
	2.00	1.50	1.33	1.83	2.00	1.50	1.67	1.33	1.67	1.33	1.17	2.33				

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Surveying & Geomatics Lab	Subject Code: TIU-UCE-L333
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5

Enable the student to:

- 1. Understand the fundamental principles of surveying and geomatics and their applications in civil engineering projects.
- 2. Learn to operate various surveying instruments such as theodolites, total stations, GPS, and leveling instruments for accurate measurements.
- 3. Apply different surveying methods for distance measurement, angle measurement, leveling, and mapping.
- 4. Develop skills in data collection, processing, and analysis using modern surveying tools and software for real-world applications.

COURSE OUTCOME:

Sl. No.	Course Outcome	Bloom
		Taxonomy
		level
CO1	Recall fundamental concepts, principles, and terminology related to surveying and geomantic. Identify various surveying instruments and their uses	K1
CO2	Describe different types of surveying techniques and recognize errors in surveying and methods for minimizing them.	K2
CO3	Explain the working principles, functionalities, and importance of different surveying instruments. Interpret field survey data for mapping and contouring.	K2
CO4	Demonstrate the process of collecting, analyzing, and recording field survey data systematically. Illustrate the importance of coordinate systems and GIS applications.	K2
CO5	Perform field surveys using theodolite, total station, and GPS for distance, angle, and elevation measurements. Compute and adjust survey measurements.	К3
CO6	Develop topographic maps, traverse computations, and layout plans using field data. Apply surveying techniques in real-world applications like land development and construction.	К3

COURSE CONTENT:

Module 1:		6 Hours					
Introduction to Chain & Compass Survey, Using of various instruments related with it.							
Module 2:		6 Hours					
Introduction to H	Introduction to Plane Table Survey, Temporary adjustment of Plane Table and various methods of						
Plane Table.							
Module 3:		6 Hours					
Temporary adjust	stment of Auto Level, Profile Leveling, Contouring.						

Module 4:		6 Hours
Traversing using	Theodolite- Preparation of Gale's Table.	
Module 5:		6 Hours
Use of Total Star	tion for Leveling and Contouring.	
Module 6:		6 Hours
Setting out of Cu	irves.	
Module 7:		9 Hours
Introduction to C	GPS.	
TOTAL LECT	URES	45 Hours

Books:

- 1. B. Gottfried, "Programming with C", McGraw-Hill Professional, 1996.
- 2. Excel 2013 in Simple Steps by Kogent Learning Solutions Inc., Dreamtech Press.
- 3. Computer Programming in Fortran 77 (With an Introduction to Fortran 90) V Rajaraman.
- 4. http://csi.csiberkeley.com/etabs9.5/watch-and-learn#page=page-1

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	2	2	1	0	0	1	0	0	0			
CO2	3	2	2	2	3	2	0	0	1	0	0	0			
CO3	3	2	3	3	3	2	0	0	1	0	0	0			
CO4	3	2	3	2	3	1	0	0	1	0	0	0			
CO5	3	2	3	2	3	3	0	0	1	0	0	0			
CO6	3	2	3	2	3	3	0	0	1	0	0	0			
	3.00	2.17	2.50	2.17	2.83	2.00	0.00	0.00	1.00	0.00	0.00	0.00			

Program: B. Tech. in Civil Engineering	Year, Semester: 3RD Yr., 5th Sem.
Course Title: Geotechnical Engineering Lab	Subject Code: TIU-UCE-L335
Contact Hours/Week: 0-0-3 (L-T-P)	Credit: 1.5

- 1. Students can get the fundamental knowledge of different types of soils, their physical properties, grain size distribution of soil and their index properties.
- 2. To calculate several important properties of soil like: permeability, maximum dry density, shear strength and consolidation

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Recall fundamental concepts of problematic soils, Field Density using Core Cutter method.	K1
CO2	Identify Plan Natural moisture content using Oven Drying method.	K2
CO3	Explain the principles of compaction, Field Density using Sand replacement method.	K1
CO4	Interpret Plan and Design Grain size distribution by Sieve Analysis	K1
CO5	Apply Plan and Develop Compaction test: Standard Proctor test.	K2
CO6	Design soil stabilization and Perform California Bearing Ratio Test and Vane shear test.	K2

COURSE CONTENT:

MODULE 1:	Insitu densification	7 Hours			
Field Density u	sing Core Cutter method.				
MODULE 2:	Densification of Cohesive Soils	7 Hours			
Field Density u	sing Sand replacement method.				
	·				
MODULE 3:	Grouting:	7 Hours			
Natural moistur	e content using Oven Drying method				
MODULE 4:	Soil stability	8 Hours			
Field identifica	tion of Fine Grained soils.				
MODULE 5:	Insitu densification	8 Hours			
Specific gravity	of Soils.				
MODULE 6:	Geotextiles.	8 Hours			
Consistency lim	its by Liquid limit, Linking Liquid Limit Testing with Geotextile Applicati	ons			
TOTAL LECTURES 45					

Books:

- 1. Foundation Analysis & Design J.E. Bowels McGraw Hill
- 2. Principles of Foundation Engineering B.M. Das Thomson Book
- 3. Foundation Design Manual N. V. Nayak Dhanpat Rai Publication Pvt. Ltd

- 4. Construction and Geotechnical methods in foundation engineering R.M. Koener McGraw Hill
- 5. Technology in tunnelling and dam construction A.V. Shroff. & D.L. hah Oxford and IBH Publishing Co.Pvt.Ltd
- 6. Reinforced Earth T S Ingold Thoam Telford
- 7. Designing with Geosynthetics R M Koerner Prentice Hall

	PROGRAM OUTCOMES (PO)										PF SI OUTC	ROGRA PECIFI COMES	M C (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	2	3	1	2	2	2	1	3	2			
CO2	2	1	1	2	2	1	1	2	1	2	1	1			
CO3	1	2	3	1	3	2	2	1	2	1	3	2			
CO4	2	2	1	2	2	1	1	2	1	2	2	1			
CO5	1	1	2	1	3	2	2	1	2	1	3	2			
CO6	1	2	1	2	3	2	1	1	2	1	3	2			
	1.33	1.67	1.50	1.67	2.67	1.50	1.50	1.50	1.67	1.33	2.50	1.67			

TECHNO INDIA UNIVERSITY

W	Ε	S	Τ	B	Ε	Ν	G	Α	L

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Economics, Estimation & Costing	Subject Code: TIU-UCE-S321
Contact Hours/Week: 0–1–3 (L–T–P)	Credit: 2.5

COURSE OBJECTIVE:

- To provide the detailed idea of Indian economics.
- To provide in principle decision to go ahead with residential or commercial project which is commonly known as administration approval in government departments.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain fundamental economic principles, including demand and supply, market structures, macroeconomic indicators, and fiscal policies.	K2
CO2	Describe the role of government in economic welfare, monetary systems, banking, and policy tools affecting inflation and employment.	K2
CO3	Use cost control techniques, budgeting, financial statements, and investment analysis to make informed business decisions.	K3
CO4	Illustrate economic growth trends, employment patterns, and key challenges in different sectors of the Indian economy.	K3
CO5	Compute quantity estimation, rate analysis, and cost-sensitive calculations for various construction components using modern tools.	K3
CO6	Describe contract types, bidding processes, legal aspects, and valuation techniques, and apply them in project cost estimation.	K2

COURSE CONTENT :

MODULE 1:	Basic Principles and Methodology of Economics	5 Hours				
Demand/Supply – elasticity –Government Policies and Application. Theory of the Firm and Market Structure. Basic Macro–economicConcepts (including GDP/GNP/NI/Disposable Income) and Identities for both closed and open economies. Aggregate demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates, Direct and Indirect Taxes (3 lectures)						
MODULE 2:	Public Sector Economics	4 Hours				
Welfare, Extern	alities, Labour Market. Components of Monetary and Financial System, Gregates: Commercial Banks & their functions: Capital and Debt Marke	Central Bank ts. Monetary				
and Fiscal Polic	by Tools & their impact on the economy – Inflation and Phillips Curve. (2)	lectures)				
MODULE 3:	Elements of Business/Managerial Economics and forms of organizations	5 Hours				
Cost & Cost Co	ontrol -Techniques, Types of Costs, Lifecycle costs, Budgets, Break ev	en Analysis,				
Capital Budget	ing, Application of Linear Programming. Investment Analysis – NPV	, ROI, IRR,				
Payback Period	l, Depreciation, Time value of money (present and future worth of	cash flows).				
Business Forecasting - Elementary techniques. Statements - Cash flow, Financial. Case Study						
Method.						
	× .1	4				
MODULE 4:	Indian economy:	4 Hours				

Brief overview of post-independence period – plans. Post reform Growth, Structure of productive activity. Issues of Inclusion – Sectors, States/Regions, Groups of people (M/F), Urbanization. Employment–Informal, Organized, Unorganized, Public, Private.Challenges and Policy Debates in Monetary, Fiscal, Social, External sectors. (2 lectures)

MODULE 5: Estimation / Measurements for various items-

9 Hours

3 Hours

2 Hour

7 Hours

2 Hour

Introduction to the process of Estimation;Use of relevant Indian Standard Specifications for the same, taking out quantities from the given requirements of the work, comparison of different alternatives, Bar bending schedules, Mass haul Diagrams, Estimating Earthwork and Foundations, Estimating Concrete and Masonry, Finishes, Interiors, MEP works; BIM and quantity take-offs; adding equipment costs; labour costs; rate analysis; Material survey-Thumb rules for computation of materials requirement for different materials for buildings, percentage breakup of the cost, cost sensitive index, market survey of basic materials. Use of Computers in quantity surveying (7 lectures)

MODULE 6: Specifications

Types, requirements and importance, detailed specifications for buildings,roads, minor bridges and industrial structures. (3 lectures)

MODULE 7: Rate analysis-

Purpose, importance and necessity of the same, factors affecting, taskwork, daily output from different equipment/ productivity. (3 lectures)

MODULE 8: Tender

Preparation of tender documents, importance of inviting tenders, contract types, relative merits, prequalification. general and special conditions, termination of contracts, extra workand Changes, penalty and liquidated charges, Settlement of disputes, R.A. Bill & Final Bill, Payment of advance, insurance, claims, price variation, bank guarantee, late delivery charges, etc. Preparing Bids- Bid Price buildup: Material, Labour, Equipment costs, Risks, Direct & Indirect Overheads, Profits; Bid conditions, alternative specifications; Alternative Bids. Bid process management (6 lectures)

MODULE 9: ntroduction to Acts

pertaining to-Minimum wages, Workman's compensation, Contracts, Arbitration, Easement rights. (1 lecture)

MODULE	ODULE Concept of Valuation and Measurement of Depreciation:							
10								
Concept and purpose of valuation, Function of a Valuer, Concepts of value and cost and its different								
types, Characteristics of an ideal investment Appreciation, Depreciation, Obsol-								
Amortization, Process and types of depreciation calculation.								

MODULE 11	Techniques of Valuation for Land and property:	2 Hours
Rental method, direc	t comparison method, profit based method, development meth	od, land and
building method.		
Total		45 Hours

Books:

1. Mankiw Gregory N. (2002), Principles of Economics, Thompson Asia

- 2. V. Mote, S. Paul, G. Gupta(2004), Managerial Economics, Tata McGraw Hill
- 3. Misra, S.K. and Puri (2009), Indian Economy, Himalaya
- 4. PareekSaroj (2003), Textbook of Business Economics, Sunrise Publishers
- 5. M Chakravarty, Estimating, Costing Specifications & Valuation
- 6. Joy P K, Handbook of Construction Management, Macmillan
- 7. B.S. Patil, Building & Engineering Contracts
- 8. Relevant Indian Standard Specifications.
- 9. World Bank Approved Contract Documents.
- 10. FIDIC Contract Conditions.
- 11. Acts Related to Minimum Wages, Workmen's Compensation, Contract, and Arbitration
- 12. Typical PWD Rate Analysis documents.
- 13. UBS Publishers & Distributors, Estimating and Costing in Civil Engineering: Theory and Practice including Specification and Valuations
- 14. Dutta, B.N., Estimating and Costing in Civil Engineering (Theory & Practice), UBS Publishers

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	1	1	1	-	1	2	2	2			
CO2	3	2	2	2	1	2	2	1	1	2	2	3			
CO3	3	3	3	3	2	2	2	1	2	3	2	3			
CO4	2	2	1	2	1	3	2	2	2	3	2	3			
CO5	3	3	3	3	3	3	2	1	2	3	3	3			
CO6	3	3	2	3	2	3	3	3	2	3	3	3			
	2.83	2.5	2	2.5	1.67	2.33	2	1.33	1.67	2.67	2.34	2.83			

TIU-UES-S381

Entrepreneurship Skill Development

1 credit

Syllabus

This course is designed to equip students with essential skills for career advancement, focusing on the latest software and technologies relevant to the civil engineering field, such as Building Information Modeling (BIM) and project management tools. Additionally, students will enhance their communication skills through presentations, report writing, and effective teamwork strategies, preparing them to excel in professional environments and collaborate efficiently in multidisciplinary teams. Emphasis will also be placed on networking and personal branding to help students effectively position themselves in the job market.

6Th SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Career Advancement & Skill Development (Grooming –Interpersonal communication & Technical Aptitude)	Subject Code: TIU-UTR-S310
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1

COURSE OBJECTIVE:

Enable the student to:

- 1. To understand the importance of communication in the professional world.
- 2. To understand the key features of a good debate and learn how to prepare text for or against a topic.
- 3. To understand proper etiquette to be used for business communication.
- 4. To get acquainted with the different flows of communication in an organization.
- 5. To revise all the technical concepts used in civil engineering.
- 6. To sharpen skills in civil engineering drawing

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the significance of effective communication in professional and business settings.	K2
CO2	Develop well-structured arguments for or against a debate topic with clarity and coherence.	K3
CO3		K3
	Demonstrate proper business communication etiquette in professional interactions.	NJ
CO4	Analyze different flows of communication within an organization and their impact.	K4
CO5	Apply technical concepts of civil engineering in discussions and professional communication.	К3
CO6	Create precise and professional civil engineering drawings as per industry standards.	K6

COURSE CONTENT:

MODULE 1:	Interpersonal communication- Small group and big group	5 Hours						
• Business communication- office scenario, Group discussion and debate, Role play								
• Delivery	• Delivery of speech, Effective presentation.							
• AI-powe	red mock interview analysis							
MODULE 2:	Any programming language	5 Hours						
latest- Python/R	programming etc							
MODULE 3:	Aptitude	10 Hours						
General aptitude								

MODULE 4:	Departmental grooming	10 Hours					
Technical aptitude - Revision of all theorems, theories and methods used in different subjects of							
civil engineering. Preparation for MCQ and interview related questions.							
Any technical software (example revision of AUTOCAD)							
Internship /Interview							
TOTAL LECTU	TOTAL LECTURES 30 Hou						

Books:

- 1. Understanding human communication by Ronald B Adler, George Rodman, Oxford University Press.
- 2. General Studies Engineering Aptitude by IES Master Publication
- 3. General Studies Engineering Aptitude by R.K. Jain
- 4. Civil Engineering Objective Type Conventional Questions and Answers by R. Agor

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	0	1	3	1	2	3	3	2	2			
CO2	1	1	3	0	1	2	1	2	3	3	2	2			
CO3	1	1	3	0	1	2	1	3	3	3	2	2			
CO4	1	2	3	2	2	2	2	2	3	3	3	2			
CO5	3	2	2	2	2	2	2	1	3	3	3	3			
CO6	3	2	3	3	3	2	2	1	3	3	3	3			
	1.67	1.50	2.67	1.17	1.67	2.17	1.50	1.83	3.00	3.00	2.50	2.33			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Hydrology and Water Resources Engineering	Subject Code: TIU-UCE-T310
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

Enable the student to:

- 1. To give the detailed information of various devices related with fluids.
- 2. To deliver the tests related to viscosity and pressure measurement.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO 1	Understand interactions between various processes in hydrological cycle.	K1
CO	Apply concepts of fluid mechanics & use of computers in solving hydraulic &	K1
2	hydrological problems	
CO	Design hydraulic structures and Study hydrological simulation models for effective	K2
3	study of flood flows and come up with solutions of mitigations.	
CO	Understand basic aquifer parameters and estimate ground water resources for	K3
4	different hydro-geological boundary conditions	
CO	Plan and Develop irrigation systems of optimal efficiency and optimal economic	K3
5	expenditure	
CO	To give solutions to waterlogging problems and suggest remedies to agricultural land	K2
6	reclamation from salination	

COURSE CONTENT:

MODULE 1:Introduction to Rural Water Supply Systems6 Hours								
This module int	roduces the need for rural water supply systems and the unique challenge	s faced in rural						
areas, such as re	esource limitations and scattered population. It covers the classification of	water sources,						
including surfac	e water, groundwater, and rainwater harvesting. Students will also learn a	about the basic						
principles of wa	ater demand estimation for rural communities, population forecasting me	ethods, and the						
design of water	design of water distribution systems. The module discusses the role of community involvement in							
maintaining and managing water supply systems.								
MODULE 2.	MODULE 2. Water Quality and Treatment in Dural Areas							

MODULE 2. Water Quanty and Treatment in Kurai Areas	onours
This module focuses on water quality parameters and the treatment processes required	to ensure safe
drinking water in rural settings. It includes an in-depth discussion on common contam	inants (such as
arsenic, fluoride, and nitrate) found in rural water supplies, along with national an	d international
standards for drinking water quality (BIS, WHO-SODIS (Solar Water Disinfection)) as	s a Sustainable
Method). Students will study various water treatment techniques suitable for rural	communities,
including filtration, chlorination, and solar disinfection. Additionally, the module introd	luces low-cost,
decentralized water treatment systems that can be effectively used in rural areas.	

MODULE 3:	6 Hours			
This module exp	plores onsite sanitation technologies and their applications in rural context	s. It covers the		
different types of sanitation systems, including pit latrines, ventilated improved pit (VIP) latrines, pour-				
flush toilets, seg	otic tanks, and composting toilets. The design criteria for onsite sanitation	on systems are		

discussed, with emphasis on factors such as soil conditions, groundwater levels, and user acceptability. The module also covers the safe disposal and management of human waste, focusing on health and environmental impacts, and strategies for sustainable sanitation practices. Students will be introduced to greywater management and its reuse for non-potable applications in rural households.

MODULE 4:	Planning	and	Implementation	of	Rural	Water	Supply	and	6 Hours
	Sanitation	n Proi	ect						

This module provides an overview of the planning, design, and implementation processes involved in rural water supply and sanitation projects. Students will learn about the key steps in project planning, from initial assessments to feasibility studies, design, construction, and maintenance. The role of local government, NGOs, and community-based organizations in rural water and sanitation projects is explored. The module includes case studies of successful rural water supply and sanitation initiatives, including government programs such as the Jal Jeevan Mission and the Swachh Bharat Mission, and examines the importance of monitoring and evaluation for project success.

MODULE 5: Sustainability and Challenges in Rural Water Supply and 6 Hours Sanitation

In this module, students will explore the long-term sustainability of rural water supply and sanitation systems. Topics include financial sustainability (operation and maintenance costs), institutional frameworks, and capacity building at the local level. The module also addresses the challenges of climate change, water scarcity, and population growth, and how these factors affect rural water supply and sanitation services. Students will study innovative approaches to improving water efficiency, ensuring water security, and promoting community-led sanitation programs. The module concludes with a discussion on future trends and technologies in rural water and sanitation systems.

TOTAL LECTURES

30 Hours

Books:

- 1. **Manual on Water Supply and Treatment** by CPHEEO, Ministry of Urban Development, Government of India.
- 2. Water Supply and Sanitation: Rural and Low-Income Urban Areas by John Pickford.
- 3. Water and Sanitation in the World's Cities: Local Action for Global Goals by UN-HABITAT.
- 4. Rural Water Supply in India: Issues and Challenges by A.K. Jain.
- 5. WHO Guidelines for Drinking-water Quality by the World Health Organization.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	1	0	0	1	1	3	1	3	1	1	3				
CO2	3	2	1	1	2	3	3	1	3	1	1	3				
CO3	3	3	3	2	3	3	3	1	3	3	3	3				
CO4	3	2	2	2	2	3	3	1	3	3	3	3				
CO5	3	3	3	2	3	2	3	3	3	3	3	3				
CO6	3	3	3	2	3	2	3	3	3	3	3	3				
	2.67	2.3	2	2	2.33	2.33	3	1.67	3	2.33	2.33	3				

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Design and Detailing of Structures	Subject Code: TIU-UCE-S324
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 2

Enable the student to:

- 1. To understand different types of structures, different structural materials and the concept of structural stability.
- 2. To provide the knowledge of different types of loads on structures.
- 3. To understand the design steps of various RCC and steel structure units

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Understand the fundamental principles of structural design and detailing as per relevant codes and standards.	K2
CO2	Apply limit state design concepts for beams, columns, slabs, and footings.	K3
CO3	Analyze and design structural components considering stability, strength, and serviceability.	K4
CO4	Evaluate structural behavior under various loading conditions and propose suitable detailing solutions.	K5
CO5	Develop structural drawings and detailing using manual and software-based approaches.	K3
CO6	Demonstrate knowledge of sustainable and economical design practices for structural elements.	K6

COURSE CONTENT:

MODULE 1:		30Hours									
Design and detailing of RCC structures- GAD for four storied RCC structure with details of slabs,											
beams, columns,	beams, columns, staircases and footings.BIM for structural detailing										
MODULE 2:		30 Hours									
Design and detailing of Steel structures-Discussion on different loads and load combinations (i.e. wind load, dead load, live load and others) as per IS875. Design and drawing of the various components of a steel factory shed. Advanced wind load analysis and dynamic earthquake-resistant design											
TOTAL LECT	FOTAL LECTURES60 Hours										

Books:

- 1. Design of steel structures- Limit state method by N.Subramanian
- 2. Design of Reinforced concrete by N.Subramanian
- 3. IS:456-2000: Plain and Reinforced concrete-code of practice
- 4. IS:800-2015: General construction in steel-code of practice.
- 5. IS:875(Part I, II) and IS: 875 (Part III)-2015.
- 6. SP-16 and SP-6(Part I).

	PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3			
CO1	3	2	3	2	2	1	1	1	1	2	1	2				
CO2	3	3	3	2	2	1	1	1	1	2	2	2				
CO3	3	3	3	3	3	1	2	1	1	3	2	3				
CO4	3	3	3	3	3	2	2	1	2	3	2	3				
CO5	3	2	3	2	3	1	1	1	2	3	2	3				
CO6	3	2	3	2	3	3	3	2	2	3	2	3				
	3.00	2.50	3.00	2.33	2.67	1.50	1.67	1.17	1.50	2.67	1.83	2.67				

Program: B. Tech. in Civil Engineering	Year, Semester: 8th Yr., 8th Sem.
Course Title: Introduction to AI & Machine Learning	Subject Code:TIU-UCS-E308A
Contact Hours/Week: 3–0–2 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Introduce the fundamental concepts of AI & ML.
- 2. Explain basic machine learning techniques.
- 3. Provide hands-on experience with Python and ML libraries.
- 4. Cover simple algorithms used in AI and ML.
- 5. Discuss ethical considerations and practical applications.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental concepts and applications of Artificial Intelligence and Machine Learning.	K2
CO2	Describe various AI problem-solving approaches, including search algorithms, knowledge representation, and expert systems.	K2
CO3	Demonstrate the use of basic Machine Learning algorithms for classification, regression, and clustering.	K3
CO4	Apply feature engineering techniques for dimensionality reduction and performance improvement.	K3
CO5	Evaluate model performance using suitable metrics like accuracy, precision, recall, and explainability.	K4
CO6	Design earth retaining structures and slope stability analysis.	K4

COURSE CONTENT:

Module 1	Artificial Intelligence - I12 Hours								
Definition, Scope and Foundation of AI, Turing test, Real life application of AI, Agent and its									
environment, D	environment, Design of Rational Agent, Learning agent, Search methods – Blind, Heuristic,								
Adversarial, Cor	nstraint-Satisfaction search								
Module 2	Module 2 Artificial Intelligence - II								
Knowledge Rep	Knowledge Representation system in AI, Problem solving using AI, Expert system, Fuzzy logic								
Module 3	Machine Learning - I	12 Hours							
Definition, Scop	Definition, Scope and Foundation of ML – evolution of ML, AI and ML – the intersection, Real								
life application	of ML, Generic pipeline of ML algorithms, Types of ML, Mathematic	al and							
Statistical found	Statistical foundation to data – issues with high dimensional data, Assessment metrics for								
performance - Accuracy, Precision, Recall, etc									
Module 4	Machine Learning - II	12 Hours							

Feature engineering – PCA, SVD, LDA, Supervised Learning: Classification: KNN, Decision Tree, RF, SVM, Regression: Linear & Logistic Regression, Polynomial regression, Unsupervised Learning – Clustering: K-means, Hierarchical clustering, Association Rule mining – Apriori algorithm

Module 5	AI and ML	12 Hours			
AI Ethics and Fu	ture Trends, Bias and Fairness in AI, Explainability of AI models, Eth	ical AI and			
Responsible AI, Future Trends in AI & ML, Recent trends in various learning techniques of					
machine learning and classification methods, Hands-on Projects and Case Studies					
TOTAL		60 Hours			

Books:

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Tom M. Mitchell, Machine Learning, McGraw Hill Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Ethem Alpaydin, Introduction to Machine Learning, MIT Press

	PROGRAM OUTCOMES (PO)										PI SI OUTC	ROGRA PECIFI COMES	M C (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	1	0	0	1	1	1	1			
CO2	3	3	2	2	1	1	0	0	2	2	1	1			
CO3	3	2	3	3	2	1	0	0	3	2	2	2			
CO4	3	2	3	3	2	2	1	0	3	2	2	2			
CO5	3	3	3	3	2	3	1	1	3	3	3	2			
CO6	2	3	2	2	3	3	2	1	2	3	3	3			
	2.83	2.50	2.33	2.33	1.83	1.83	0.67	0.33	2.33	2.17	2.00	1.83			

Program: B. Tech. in Civil Engineering	Year, Semester: 8th Yr., 8th Sem.
Course Title: Advanced Concrete Technology	Subject Code:TIU-UCE-E324A
Contact Hours/Week: 3–0–2 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Gain in-depth knowledge of cement production, composition, and hydration processes.
- 2. Understand the properties of aggregates and their influence on concrete performance.
- 3. Analyze the role of chemical and mineral admixtures in modifying concrete behavior.
- 4. Design and evaluate high-performance concrete mixes for specialized applications.
- 5. Assess the properties of fresh and hardened concrete through standard tests.
- 6. Examine the effects of creep, shrinkage, and durability on concrete structures.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain cement production processes, composition, and hydration chemistry.	K2
CO2	Analyze the properties and characteristics of aggregates for concrete.	K4
CO3	Evaluate the effectiveness of chemical and mineral admixtures in concrete.	K4
CO4	Explain the principles of high-performance concrete mix design.	K2
CO5	Describe the properties of fresh and hardened concrete.	K2
CO6	Design earth retaining structures and slope stability analysis.	K4

COURSE CONTENT:

Module 1	Cement Production and Composition	10 Hours						
Overview of the cement industry, Raw materials and manufacturing process, Chemical								
composition of	cement, Hydration reactions, Heat of hydration, Setting and harder	ning,						
Microstructure	development, GreenCement, Influence of curing.							
Module 2	Aggregates for Concrete	8 Hours						
Types and sour	ces of aggregates, Physical properties of aggregates, Quality require	ments,						
Grading, Shape	and texture, Strength of aggregates, Alkali-aggregate reactions and	preventive						
measures, Case	studies- RCA, Use of Industrial By-products as Aggregates/Artificial							
aggregates)								
Module 3	Chemical and Mineral Admixtures	12 Hours						
Types and functions of chemical admixtures, Superplasticizers and their compatibility,								
Retarders, Accelerators, Air-entraining agents, Mineral admixtures like fly ash, silica fume, and								
slag, Pozzolanic reactions and influence on concrete properties, Bio-based or ECOfriendly								

Admixtures (like-natural pozzolans, agricultural ash (e.g., rice husk ash)

Module 4	High-Performance Concrete	10 Hours						
Definition and objectives, Factors influencing mix design, Design methods for high-								
performance co	ncrete, Step-by-step procedure, Ultra high performance concrete (UHPC),Case						
studies and app	lications.							
Module 5	Fresh and Hardened Concrete	10 Hours						
Workability test	s and factors affecting workability, Segregation and bleeding, Placi	ng,						
compacting, an	d finishing of concrete, Compressive, tensile, and flexural strength t	ests,						
Factors influence	ing hardened properties, Permeability and water absorption.							
Module 6	Creep and Shrinkage	10 Hours						
Mechanisms of creep, Factors affecting creep, Measurement, and control, Types of shrinkag - plastic, drying, and autogenous, Effects and mitigation methods.								
TOTAL								

Books:

- 1. Concrete Technology by M.S. Shetty & A.K. Jain
- 2. Advanced Concrete Technology by Zongjin Li
- 3. Properties of Concrete by A.M. Neville
- 4. Concrete Microstructure, Properties, and Materials by P.K. Mehta & Paulo J.M. Monteiro
- 5. IS Codes and Standards (IS 456:2000, IS 10262:2019).

	PROGRAM OUTCOMES (PO)											PF SI OUTC	ROGRA PECIFI COMES	M C (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	1	0	0	1	1	1	1			
CO2	3	3	2	2	1	1	0	0	2	2	1	1			
CO3	3	2	3	3	2	1	0	0	3	2	2	2			
CO4	3	2	3	3	2	2	1	0	3	2	2	2			
CO5	3	3	3	3	2	3	1	1	3	3	3	2			
CO6	2	3	2	2	3	3	2	1	2	3	3	3			
	2.83	2.50	2.33	2.33	1.83	1.83	0.67	0.33	2.33	2.17	2.00	1.83			

TECHNO INDIA UNIVERSITY WESTBENGAL

Program: B. Tech. in Civil Engineering	Year, Semester: 8th Yr., 8th Sem.
Course Title: Repairs and Rehabilitation of Structures	Subject Code: TIU-UCE-E334A
Contact Hours/Week: 3-0-2 (L-T-P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the causes of distress and deterioration in concrete and masonry structures.
- 2. Learn the importance of maintenance, inspection, and assessment of damaged structures.
- 3. Study various materials and techniques used for repair and rehabilitation of structures.
- 4. Develop an understanding of retrofitting methods and strengthening techniques for different structural elements.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental causes of structural deterioration, including material degradation, environmental effects, and loading conditions.	K2
CO2	Describe various assessment techniques, including non-destructive testing (NDT) and visual inspection, to evaluate structural damage.	K2
CO3	Apply appropriate repair and strengthening techniques for different types of structural defects based on engineering standards and best practices.	K3
CO4	Demonstrate the use of advanced materials, such as fiber-reinforced polymers (FRP) and high-performance concrete, for structural rehabilitation.	K3
CO5	Develop strategies for maintenance, retrofitting, and life-cycle enhancement of existing structures, ensuring safety and durability.	K3
CO6	Integrate sustainability concepts into structural rehabilitation, considering cost, environmental impact, and long-term performance.	K3

COURSE CONTENT :

MODULE 1:	Introduction	11 Hours						
Maintenance, rehabilitation, repair, retrofit and strengthening, need for rehabilitation of structures.								
Cracks in R.C.	buildings-Various cracks in R.C. buildings, causes and effects	. Maintenance-						
Maintenance im	portance of maintenance, routine and preventive maintenance	e. Damages to						
masonry structur	es-Various damages to masonry structures and causes							
MODULE 2:	Repair materials	13 Hours						
Various repair r	naterials, Criteria for material selection, Methodology of selection	on, Health and						
safety precaution	is for handling and applications of repair materials, Special mortan	s and concretes						
(Self-healing co	oncrete/geopolymer concrete/Polymer Concrete and Mortar),	Quick setting						
compounds, Gro	outing materials, Gas forming grouts, Sulphoalumate grouts, H	olymer grouts,						
Acrylate and Ure	ethane grouts. Bonding agents-Latex emulsions, Epoxy bonding ag	ents. Protective						
coatings-Protecti	ve coatings for Concrete and Steel, FRP sheets.							
MODULE 3:	Damage diagnosis and assessment	18 Hours						
Visual inspection, Use of Infrared Thermography for Damage Detection, Non Destructive Testing								
using Rebound hammer, Ultra sonic pulse velocity, Semi destructive testing, Probe test, Pull out								

test, Chloride penetration test, Carbonation, Carbonation depth testing, Corrosion activity measurement Substrate preparation-Importance of substrate/surface preparation, General surface preparation methods and procedure, Reinforcing steel cleaning.

MODULE 4: Crack repair	18 Hours								
Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing,									
Autogenous healing, UHPC Overlays, Repair to active cracks, Repair to dormant cracks. Corrosion									
of embedded steel in concrete, Corrosion of embedded steel in concrete, Mechanism, Stages of									
corrosion damage, Repair of various corrosion damaged of structural elements	(slab, beam and								
columns).Jacketing-Jacketing, Column jacketing, Beam jacketing, Beam Column	joint jacketing,								
Reinforced concrete jacketing, Steel jacketing, FRP jacketing. Strengthening-Strengthening, Beam									
shear strengthening, Flexural strengthening.									
TOTAL LECTURES 60 Hou									

Books:

- 1. Repair and protection of concrete structures by Noel P.Mailvaganam, CRC Press, 1991.
- 2. Concrete repair and maintenance Illustrated by Peter.H.Emmons, Galgotia publications Pvt. Ltd., 2001.
- 3. "Earthquake resistant design of structures" by Pankaj agarwal, Manish shrikande, PHI, 2006.
- 4. Failures and repair of concrete structures by S.Champion, John Wiley and Sons, 1961.
- 5. Diagnosis and treatment of structures in distress by R.N.Raikar Published by R & D Centre of Structural Designers and Consultants Pvt.Ltd, Mumbai.
- 6. Handbook on repair and rehabilitation of RCC buildings, CPWD, Government of India.
- 7. Handbook on seismic retrofit of buildings, A. Chakrabarti et.al., Narosa Publishing House, 2010.

			I		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	1	0	0	1	1	1	1			
CO2	3	3	2	2	1	1	0	0	2	2	1	1			
CO3	3	2	3	3	2	1	0	0	3	2	2	2			
CO4	3	2	3	3	2	2	1	0	3	2	2	2			
CO5	3	3	3	3	2	3	1	1	3	3	3	2			
CO6	2	3	2	2	3	3	2	1	2	3	3	3			
	2.83	2.50	2.33	2.33	1.83	1.83	0.67	0.33	2.33	2.17	2.00	1.83			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Structural Dynamics & Earthquake Engineering	Subject Code:TIU-UCE-E344A
Contact Hours/Week: 3–0–0(L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. To provide a basic understanding of dynamic loading. Study the effect of earthquake loading on the behaviour of structures.
- 2. To provide a coherent development to the students for the courses in sector of earthquake engineering.
- 3. To present the foundations of many basic engineering concepts related earthquake engineering.
- 4. To give an experience in the implementation of engineering concepts which are applied in field of earthquake engineering.
- 5. To involve the application of scientific and technological principles of planning, analysis, design of buildings according to earthquake design philosophy.
- 6. Understand the codal provisions to design the structures as earthquake resistant.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Define and describe the fundamental concepts of structural dynamics, including degrees of freedom, damping, resonance, and dynamic response of structures.	K1
CO2	Explain the behavior of single-degree and multi-degree-of-freedom systems under dynamic loading and interpret their responses using mathematical models.	K2
CO3	Illustrate and analyze the effects of seismic forces on structures, including ground motion characteristics, response spectra, and earthquake-resistant design principles.	K2
CO4	Apply dynamic analysis techniques to evaluate structural responses under various dynamic loads, including earthquake and wind forces.	K3
CO5	Compute and design earthquake-resistant structures using IS 1893, IS 13920, and other relevant seismic codes, ensuring safety and stability.	K3
CO6	Develop and assess retrofitting techniques for existing structures to enhance their seismic performance based on modern engineering practices.	К3

COURSE CONTENT:

MODULE 1:	Theory of vibrations 8 I								
Degrees of freedom, Undamped single degree freedom system, Damped single degree freedom									
system, Natura	al frequency, modes of vibration, introduction to multiple degree fre	eedom system.							
MODULE 2:	Response of single degree freedom system due to	7 Hours							
	harmonic loading								
Undamped harmonic excitation, Damped Harmonic excitation.									
MODULE 3:	Response due to Transient loading	10 Hours							

Duhamel's Integral, Response due to constant force, Rectangular load, Overview of dynamic response of structures due to impact or explosion loads. Introduction to numerical evaluation of Duhamel's integral of undamped system.

MODULE 4:Elements of seismology10 HoursFundamentals, Elastic rebound theory, Plate tectonics, Definitions of magnitude, Intensity, Epicenter etc., Seismographs, Seismic zoning, Response of Simple Structural Systems.Introduction to GIS and Remote Sensing for Seismic Zoning Maps.MODULE 5:Principles of earthquake resistant design10 HoursTerminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.											
Fundamentals, Elastic rebound theory, Plate tectonics, Definitions of magnitude, Intensity, Epicenter etc., Seismographs, Seismic zoning, Response of Simple Structural Systems.Introduction to GIS and Remote Sensing for Seismic Zoning Maps. MODULE 5: Principles of earthquake resistant design 10 Hours Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	MODULE 4:	Elements of seismology	10 Hours								
Epicenter etc., Seismographs, Seismic zoning, Response of Simple Structural Systems.Introduction to GIS and Remote Sensing for Seismic Zoning Maps. 10 Hours MODULE 5: Principles of earthquake resistant design 10 Hours Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	Fundamentals	Fundamentals, Elastic rebound theory, Plate tectonics, Definitions of magnitude, Intensity,									
Systems.Introduction to GIS and Remote Sensing for Seismic Zoning Maps. MODULE 5: Principles of earthquake resistant design 10 Hours Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	Epicenter et	c., Seismographs, Seismic zoning, Response of Simp	le Structural								
MODULE 5: Principles of earthquake resistant design 10 Hours Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	Systems.Intro	luction to GIS and Remote Sensing for Seismic Zoning Maps.									
MODULE 5: Principles of earthquake resistant design 10 Hours Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing.Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.											
Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing. Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	MODULE 5:	Principles of earthquake resistant design	10 Hours								
force method of Analysis for multistoried building as per Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing. Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	Terminology,	General principles and Design criteria, Methods of Analysis, Equ	uivalent lateral								
Introduction to Response Spectrum Method, Fundamental concepts of ductile detailing. Case Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	force method	of Analysis for multistoried building as per Indian Standard Co	de of Practice,								
Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building failure modes and lessons learned.	Introduction t	o Response Spectrum Method, Fundamental concepts of ductile	detailing.Case								
failure modes and lessons learned.	Studies of Recent Earthquakes (e.g., Nepal 2015, Turkey-Syria 2023) – Analysis of building										
	failure modes and lessons learned.										
TOTAL LECTURES45 Hours											

Books:

- 1. Clough.R.W, and Penzien.J, Dynamics of Structures, Second Edition, Mc Graw Hill International Edition, 1995
- 2. Agarwal.P and Shrikhande.M.,Earthquake Resistant Design of Structures, Prentice Hall of India Pvt. Ltd. 2007.
- 3. Mario Paz, Structural Dynamics Theory and Computations, Third Edition, CBS publishers, 1990.
- 4. Humar.J.L, Dynamics of Structures, Prentice Hall Inc., 1990.

]		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	0	0	0	1	0	0	1	0	2			
CO2	3	3	2	0	0	0	1	0	0	1	0	2			
CO3	3	3	2	1	1	0	1	0	0	1	0	2			
CO4	3	3	3	2	2	0	2	0	0	1	1	2			
CO5	3	3	3	2	2	0	2	0	0	1	1	2			
CO6	3	3	3	2	2	0	2	0	0	1	1	2			
	3	2.83	2.5	1.16	1.16	0	1.5	0	0	1	0.5	2			

Program: B. Tech. in Civil Engineering	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Project - Structural Engineering	Subject Code: TTIU-UCE-P302
Contact Hours/Week: 0–0–6 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Integrate theoretical knowledge with practical application in addressing real-world structural engineering challenges.
- 2. Develop critical thinking and problem-solving skills by analyzing complex structural engineering problems and proposing innovative solutions.
- 3. Enhance research skills through literature review, data collection, and analysis relevant to the project topic.
- 4. Foster teamwork and communication skills by collaborating effectively with peers and presenting findings to a broader audience.
- 5. Utilize modern tools and technologies relevant to the specific area of civil engineering for modeling, simulation, and analysis.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify key research areas, methodologies, and literature sources relevant to	K1
	structural engineering.	
CO2	Analyze and synthesize research findings to identify research gaps and define a problem statement	K4
CO3	Develop a structured research proposal with appropriate methodology and feasibility analysis.	K5
CO4	Apply computational, experimental, or hybrid techniques for preliminary research work.	К3
CO5	Demonstrate skills in research planning, technical writing, and academic presentations.	K6
CO6	Evaluate ethical considerations and best practices in civil engineering research.	K5

			l	PI SI OUTC	ROGRA PECIFI COMES	M C (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	2	-	-	2	2	2	3			
CO2	3	3	3	3	3	2	2	2	2	2	2	3			
CO3	3	3	3	3	3	3	2	2	2	2	3	3			
CO4	3	3	3	3	3	3	3	2	2	3	3	3			
CO5	3	3	3	3	3	3	3	3	3	3	3	3			
CO6	3	3	3	3	3	3	3	3	3	3	3	3			
	3	3	3	3	3	2.6	2.6	2.4	2.3	2.5	2.6	3			

TIU-UES-S382

Entrepreneurship Skill Development

1 credit

Syllabus

This course is designed to equip students with essential skills for career advancement, focusing on the latest software and technologies relevant to the civil engineering field, such as Building Information Modeling (BIM) and project management tools. Additionally, students will enhance their communication skills through presentations, report writing, and effective teamwork strategies, preparing them to excel in professional environments and collaborate efficiently in multidisciplinary teams. Emphasis will also be placed on networking and personal branding to help students effectively position themselves in the job market.

W E S T B E N G A L 7th SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Career Advancement & Skill Development-(Computer Application in Civil Engineering)	Subject Code: TIU-UCE-S403
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

COURSE OBJECTIVE :

Enable the student to:

- 1. Enable students to formulate simple algorithms for arithmetic and logical problems.
- 2. Develop proficiency in translating algorithms into programs using programming languages such as C, Fortran, or Python.
- 3. Understand the application of Excel for performing civil engineering calculations efficiently.
- 4. Utilize civil engineering software (STAAD, ETABS, SAP2000, ANSYS) for structural analysis and design.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Formulate simple algorithms for solving arithmetic and logical problems.	K3
CO2	Develop and translate algorithms into programs using C, Fortran, or Python.	K3
CO3	Apply Excel functions to perform civil engineering calculations.	K3
CO4	Analyze and interpret data using Excel for civil engineering applications.	K4
CO5	Use civil engineering software such as STAAD, ETABS, SAP2000, and ANSYS for structural analysis and design.	K3
CO6	Evaluate the results obtained from civil engineering software for effective decision-making.	K5

COURSE CONTENT :

MODULE 1:		30 Hours					
Introduction to Civil engineering software (any of STAAD, ETAB, SAP2000etc): Familiarization							
with programming environment- Complete analysis and design using software along with report							
submission							
TOTAL		30 Hours					

Books:

- 1. B. Gottfried, "Programming with C", McGraw-Hill Professional, 1996.
- 2. Excel 2013 in Simple Steps by Kogent Learning Solutions Inc., Dreamtech Press.
- 3. Computer Programming in Fortran 77 (With an Introduction to Fortran 90) V Rajaraman.
- 4. http://csi.csiberkeley.com/etabs9.5/watch-and-learn#page=page-1

TECHNO INDIA UNIVERSITY WESTBENGAL

					W .	E		B	E	N	G	Α	L		
	PROGRAM OUTCOMES (PO)											PI S OUTC	ROGRA PECIFI COMES	M C (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	3	0	0	0	1	1	1	2			
CO2	3	3	2	3	3	0	0	0	1	2	2	2			
CO3	2	2	2	3	3	0	1	0	1	2	2	2			
CO4	2	3	2	3	3	0	1	0	1	2	2	2			
CO5	3	3	3	3	3	0	1	0	1	2	2	3			
CO6	3	3	3	3	3	1	1	0	1	2	2	3			
	2.67	2.67	2.17	2.83	3.00	0.17	0.67	0.00	1.00	1.83	1.83	2.33			

Credit: 3

COURSE OBJECTIVE :

Contact Hours/Week: 3–0–0 (L–T–P)

Enable the student to:

- 1. To get a thorough overview of metro systems.
- 2. To understand what is the need of metros in today's world.
- 3. To learn how basic plannings are done.
- 4. To get the idea of routine studies in metro systems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental principles of metro rail systems, including their significance, components, and classification.	K2
CO2	Describe the design standards, alignment selection, and construction methodologies for metro systems, considering geological and urban constraints.	K2
CO3	Apply IS codes, guidelines, and best practices for the planning, design, and implementation of metro rail projects.	K3
CO4	Analyze and compare different track structures, traction systems, and signaling technologies used in metro rail operations.	K3
CO5	Evaluate metro system performance, including operational efficiency, sustainability, and environmental impact.	K3
CO6	Demonstrate the ability to integrate modern tools and project management techniques in metro system planning and execution.	K3

COURSE CONTENT :

MODULE 1:		15 Hours						
Overview and construction methods for: Elevated and underground Stations; Viaduct spans and								
bridges; Undergr	ound tunnels; Depots; Commercial and Service buildings.							
MODULE 2:		15 Hours						
Initial Surveys &	& Investigations; Basics of Construction Planning & Managemen	nt, Construction						
Quality & Safety	Systems.							
MODULE 3:		15 Hours						
Traffic integrati	Traffic integration, multimodal transfers and pedestrian facilities; Environmental and social							
safeguards; Track systems-permanent way. Facilities Management.								
TOTAL LECTU	45 Hours							

Books:

- 1. "**Principles of Metro Rail Engineering**" S. Ponnuswamy
- 2. "Urban Transit: Systems and Technology" Vukan R. Vuchic
- 3. "Tunnel Engineering Handbook" Bickel, Kuesel & King
- 4. "Railway Bridge and Tunnel Engineering" Rangwala
- 5. "Railway Track Engineering" J.S. Mundrey
- 6. "Building Metro Rail Stations" Paul Maxwell

TECHNO INDIA UNIVERSITY W E S T B E N G A L

Program: B. Tech. in Civil Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Solid and Hazardous Waste	Subject Code: TIU-UCE-E455
Management	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. understanding of problems of municipal waste, biomedical waste, hazardous waste, ewaste, industrial waste etc.
- 2. gather knowledge of legal, institutional and financial aspects of management of solid wastes.
- 3. become aware of Environment and health impacts solid waste mismanagement.
- 4. understand engineering, financial and technical options for waste management.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental causes of structural deterioration, including material degradation, environmental effects, and loading conditions.	K2
CO2	Describe various assessment techniques, including non-destructive testing (NDT) and visual inspection, to evaluate structural damage.	K2
CO3	Apply appropriate repair and strengthening techniques for different types of structural defects based on engineering standards and best practices.	K3
CO4	Demonstrate the use of advanced materials, such as fiber-reinforced polymers (FRP) and high-performance concrete, for structural rehabilitation.	K3
CO5	Develop strategies for maintenance, retrofitting, and life-cycle enhancement of existing structures, ensuring safety and durability.	K3
CO6	Integrate sustainability concepts into structural rehabilitation, considering cost, environmental impact, and long-term performance.	K3

COURSE CONTENT :

MODULE 1:	Solid Wastes	6 Hours							
Origin, Analysis,	Origin, Analysis, Composition and Characteristics.								
MODULE 2:	MODULE 2:Integrated Solid Waste Management System8 Hou								
Collection, Stora	ge, Segregation, Reuse and Recycling possibilities, Transportati	on, Treatment /							
Processing and T	ransformation Techniques, Final Disposal								
MODULE 3:	Management of Different types of Solid Waste	9 Hours							
Municipal, Biomedical, Nuclear, Electronic and Industrial Solid Wastes and the rules and regulations. Introduction to Hazardous wastes, Definition of Hazardous waste, The magnitude of									
the problem.									
MODULE 4:	Hazardous waste	14 Hours							

Risk assessment, Environmental legislation, Characterization and site assessment, Waste minimization and resource recovery, Transportation of hazardous waste, Physical, chemical and biological treatment, Ground water contamination, Landfill disposal, Current Management Practices, Environmental audit, Pollution Prevention, Facility Development and operation

MODULE 5:	Site Remedi	ation						8 Hours	
Quantitative ris	k assessment	, site	and	subsurface	characterization,	Contain	ment,	remedial	
alternatives.									
TOTAL LECTURES									

Books:

- 1. Solid and hazardous waste management by S.Bhatia.Atlantic publishers.
- 2. Solid and hazardous waste management: Science and engineering by A.Shah, M.N.Rao. B.S. Publications.

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	3	0	0	0	1	1	1	2			
CO2	3	3	2	3	3	0	0	0	1	2	2	2			
CO3	2	2	2	3	3	0	1	0	1	2	2	2			
CO4	2	3	2	3	3	0	1	0	1	2	2	2			
CO5	3	3	3	3	3	0	1	0	1	2	2	3			
CO6	3	3	3	3	3	1	1	0	1	2	2	3			
	2.67	2.67	2.17	2.83	3.00	0.17	0.67	0.00	1.00	1.83	1.83	2.33			

TECHNO INDIA UNIVERSITY WESTBENGAL

Program: B. Tech. in Civil Engineering	Year, Semester: 8th Yr., 8th Sem.
Course Title: Bridge Engineering	Subject Code: TIU-UCE-E461
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. understand the background of bridge development, classification of bridges.
- 2. prepare a thorough understanding of the behavior and design of bridges.
- 3. understand design equations for different types of bridges.
- 4. discuss relevant modern research topics from the field of bridge engineering.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental causes of structural deterioration, including material degradation, environmental effects, and loading conditions.	K2
CO2	Describe various assessment techniques, including non-destructive testing (NDT) and visual inspection, to evaluate structural damage.	K2
CO3	Apply appropriate repair and strengthening techniques for different types of structural defects based on engineering standards and best practices.	K3
CO4	Demonstrate the use of advanced materials, such as fiber-reinforced polymers (FRP) and high-performance concrete, for structural rehabilitation.	K3
CO5	Develop strategies for maintenance, retrofitting, and life-cycle enhancement of existing structures, ensuring safety and durability.	K3
CO6	Integrate sustainability concepts into structural rehabilitation, considering cost, environmental impact, and long-term performance.	K3

COURSE CONTENT :

MODULE 1:	: Introduction 6 Hours										
Definition and B	asic Forms, Component of bridge, classification of bridge, short h	nistory of bridge									
development. IR	C Loads. Analysis of IRC Loads, Impact factors, Other loads to	be considered,									
Importance of Hydraulic factors in Bridge Design.											
MODULE 2:	General Design Considerations	6 Hours									
Reinforced concrete solid slab bridge-Introduction, General design features, Effective width method. Simply supported and cantilever Slab Bridge, analysis and design. Box Culvert, Beam and Slab Bridges, Balanced Cantilever Bridge.											
MODULE 3:	Steel Bridges	7 Hours									
General features, types of stress, Design example.											
MODULE 4:	Plate Girder Bridge	7 Hours									
Elements, design	, lateral bracing, Box- girder Bridges.										

	W	E	S	Т	B	Ε	Ν	G	Α	\mathbf{L}	
MODULE 5:	Composite Bridges										9 Hours
General aspects, composite beam.	method of constructio	n, ar	nalys	is of	comp	osite	sect	ion, s	hear	conn	ectors, design of
MODULE 6:	Cable Stayed Bridge	e:									10 Hours
General features,	Philosophy of design.										
TOTAL LECTU	JRES										45 Hours

Books:

- 1. Victor, D.J., Essentials of bridge engineering, Oxford & IBH Publishing.
- 2. Bindra, S. P., Principles and Practice of Bridge Structures, Dhanpat Rai Publications.
- 3. Jagadeesh, T. R., and Jayaram, M. A., Design of Bridge Structures, Phi Learning.
- 4. Ponnuswamy, S., Bridge Engineering, Tata Mcgraw Hill.

]	PROG		PROGRAM SPECIFIC OUTCOMES (PSO)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	1	2	1	0	1	1	2			
CO2	3	3	2	3	2	1	2	1	0	1	2	2			
CO3	3	3	3	3	3	2	2	1	1	2	3	3			
CO4	2	3	3	3	3	2	2	1	1	2	3	3			
CO5	2	3	3	3	3	3	3	2	1	2	3	3			
CO6	2	2	3	3	3	3	3	2	1	3	3	3			
	2.5	2.67	2.67	2.83	2.5	2	2.33	1.33	0.67	1.83	2.5	2.67			

WESTBENGAL

Program: B. Tech. in Civil Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title: Internship I	Subject Code: TIU-UCE-P495
Contact Hours/Week: 0-0-0 (L-T-P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 1. Bridge the gap between classroom learning and real-world application by providing hands-on experience in civil engineering projects.
- 2. Enhance technical skills, including design, analysis, project management, and the use of engineering software.
- 3. Familiarize interns with industry standards, practices, and technologies used in civil engineering.
- 4. Gain insights into the various phases of a project, from planning and design to construction and maintenance.
- 5. Build connections with industry professionals, peers, and mentors, which can aid in future career opportunities.
- 6. Provide insights into various career paths within civil engineering, helping interns identify their areas of interest.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Demonstrate an understanding of industry operations, professional work culture, and real-world engineering applications.	K2
CO2	Apply theoretical knowledge gained in academics to solve practical engineering problems in an industrial or research setting.	K3
CO3	Develop technical and analytical skills by engaging in hands-on work, projects, or industrial training.	K3
CO4	Exhibit teamwork, communication, and leadership skills by collaborating with professionals in the industry.	K4
CO5	Identify challenges and gaps in current industrial practices and propose innovative or optimized solutions.	K5
CO6	Prepare technical reports and presentations based on internship experiences, documenting learning outcomes and industry insights.	K6

COURSE CONTENT :

MODULE 1:		4 weeks								
Introduction to I	ndustry & Work Culture, Technical Learning & Hands-on Exposur	re, Teamwork &								
Communication,	Communication, Identifying Challenges & Solutions, Report Writing & Presentation									
TOTAL		4 weeks								

TECHNO INDIA UNIVERSITY WESTBENGAL

					W	Ľ	5 1		5 E		G	Α	L		
		PI S PROGRAM OUTCOMES (PO) OUTC													M C (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	0	0	0	0	2	0	0	2	0	0	2			
CO2	3	2	0	0	2	0	0	0	0	0	0	0			
CO3	3	0	0	0	2	0	0	0	2	0	0	2			
CO4	0	0	0	0	0	0	0	0	3	2	0	0			
CO5	0	2	0	2	0	2	2	0	0	0	0	0			
CO6	0	0	0	0	0	0	0	0	0	3	2	0			
	2.5	2.67	2.67	2.83	2.5	2	2.33	1.33	0.67	1.83	2.5	2.67			

Program: B. Tech. in Civil Engineering	Year, Semester: 4th Yr., 7th Sem.
Course Title:Entrepreneurship Skill Development	Subject Code: TIU-UES-S493
(Project)	
Contact Hours/Week: 0–0–8 (L–T–P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 6. Integrate theoretical knowledge with practical application in addressing real-world civil engineering challenges.
- 7. Develop critical thinking and problem-solving skills by analyzing complex engineering problems and proposing innovative solutions.
- 8. Enhance research skills through literature review, data collection, and analysis relevant to the project topic.
- 9. Foster teamwork and communication skills by collaborating effectively with peers and presenting findings to a broader audience.
- 10. Utilize modern tools and technologies relevant to the specific area of civil engineering for modeling, simulation, and analysis.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify key research areas, methodologies, and literature sources relevant to civil	K1
	engineering.	
CO2	Analyze and synthesize research findings to identify research gaps and define a	K4
	problem statement	
CO3	Develop a structured research proposal with appropriate methodology and	K5
	feasibility analysis.	
CO4	Apply computational, experimental, or hybrid techniques for preliminary	K3
	research work.	
CO5	Demonstrate skills in research planning, technical writing, and academic	K6
	presentations.	
CO6	Evaluate ethical considerations and best practices in civil engineering research.	K5

			J	PROG	GRAI	MOU	JTCC	OMES	5 (PO)			PI Si OUTC	ROGRA PECIFI COMES	M C (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	2	-	-	2	2	2	3			
CO2	3	3	3	3	3	2	2	2	2	2	2	3			
CO3	3	3	3	3	3	3	2	2	2	2-	3	3			
CO4	3	3	3	3	3	3	3	2	2	3	3	3			
CO5	3	3	3	3	3	3	3	3	3	3	3	3			

TECHNO INDIA UNIVERSITY WESTBENGAL

					**		L C			1 1	U				
]	PROG	GRAI	MOU	JTCO	OMES	5 (PO)			PI S OUTC	ROGRA PECIFI COMES	M C (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO6	3	3	3	3	3	3	3	3	3	3	3	3			
	3	3	3	3	3	2.6	2.6	2.4	2.3	2.5	2.6	3			

8TH SEMESTER

Program: B. Tech. in Civil Engineering	Year, Semester: 8th Yr., 8th Sem.
Course Title: Career Advancement & Skill	Subject Code: TIU-UMG-S412
Development-(Professional Practice, Law- Ethics)	
Contact Hours/Week: 0–0–1 (L–T–P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the roles and responsibilities of various stakeholders in civil engineering practice.
- 2. Develop knowledge of professional ethics, ethical dilemmas, and decision-making in engineering practice.
- 3. Learn the principles of contract management, types of contracts, and legal aspects of construction.
- 4. Gain insights into dispute resolution mechanisms, including arbitration, conciliation, and mediation.
- 5. Understand labor laws, employment regulations, and legal frameworks affecting construction projects.
- 6. Develop awareness of intellectual property rights and their relevance to engineering practice.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the roles and responsibilities of stakeholders in professional civil engineering practice.	K2
CO2	Analyze ethical dilemmas in engineering and apply professional ethics to decision-making.	K4
CO3	Interpret various types of contracts, legal provisions, and contract management principles in construction projects.	K3
CO4	Evaluate different dispute resolution methods and legal frameworks applicable to civil engineering.	K5
CO5	Apply labor laws and employment regulations to construction management practices.	K3
CO6	Assess intellectual property rights and their significance in engineering innovation and practice.	K5

COURSE CONTENT :

MODULE 1: Professio	nal Practice	5 Hours
Respective roles of varie	ous stakeholders: Government (constituting regulate	ory bodies and
standardization organization	ns, prescribing norms to ensure safety of the citizens);	Standardization
Bodies (ex. BIS, IRC)(for	mulating standards of practice); professional bodies (e	x. Institution of
Engineers(India), Indian R	oads Congress, IIA/ COA, ECI, Local Bodies/ Plann	ing Authorities)
(certifying professionals an	d offering platforms for interaction); Clients/ owners (r	ole governed by
contracts); Developers (role	e governed by regulations such as RERA); Consultants	s (role governed
by bodies such as CEAI)	; Contractors (role governed by contracts and regul	atory Acts and
Standards); Manufacturers/	Vendors/ Service agencies (role governed by contracts	s and regulatory

W E S T B E N G A L

Acts and Standards).

MODULE 2: Professional Ethics

3 Hours

Definition of Ethics, Professional Ethics, Business Ethics, Corporate Ethics, Engineering Ethics, Personal Ethics; Code of Ethics as defined in the website of Institution of Engineers (India); Profession, Professionalism, Professional Responsibility, Professional Ethics; Conflict of Interest, Gift Vs Bribery, Environmental breaches, Negligence, Deficiencies in state-of-the-art; Vigil Mechanism, Whistleblowing, protected disclosures.

MODULE 3:	General Principles of Contracts Management	7 Hours
Indian Contract	Act, 1972 and amendments covering General principles of contra	acting; Contract
Formation & La	w; Privacy of contract; Various types of contract and their fea	atures; Valid &
Voidable Contra	cts; Prime and sub- contracts; Joint Ventures & Consortium; Co	omplex contract
terminology; Te	nders, Request For Proposals, Bids & Proposals; Bid Evalu	ation; Contract
Conditions & S	pecifications; Critical /"Red Flag" conditions; Contract award	& Notice To
Proceed; Variati	ons & Changes in Contracts; Differing site conditions; Cost esc	alation; Delays,
Suspensions &	Terminations; Time extensions & Force Majeure; Delay Analy	sis; Liquidated
damages & Per	alties; Insurance & Taxation; Performance and Excusable No	on-performance;
Contract docume	entation; Contract Notices; Wrong practices in contracting (Bid	shopping, Bid
fixing, Cartels);	Reverse auction; Case Studies; Build- Own-Operate & variations;	Public- Private
Partnerships; Inte	ernational CommercialTerms.	

MODULE 4:	Arbitration, Conciliation and ADR (Alternative Dispute	5 Hours
	Resolution) system	

Arbitration – meaning, scope and types – distinction between laws of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interim measures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, grounds of challenge, procedure and court assistance; Award including Form and content, Grounds for setting aside an award, Enforcement, Appeal and Revision; Enforcement of foreign awards – New York and Geneva Convention Awards; Distinction between conciliation, negotiation, mediation and arbitration, confidentiality, resort to judicial proceedings, costs; Dispute Resolution Boards; Lok adalats.

MODULE 5:	Engagement of Labour and Labour& other construction-	4 Hours
	related Laws	

Role of LabourinCivil Engineering; Methods of engaging labour- on rolls, labour sub-contract, piece rate work; Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen's Compensation Act, 1923; Building & Other Construction Workers (regulation of employment and conditions of service) Act (1996) and Rules (1998); RERA Act 2017, NBC2017.

MODULE 6:	Law relating to Intellectual property	6 Hours
-----------	---------------------------------------	---------

Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet – Remedies and procedures in India; Law relating to Patents under Patents Act, 1970 including Concept and historical perspective of patents

WESTBENGAL

law in India, Patentable inventions with special reference to biotechnology products, Patent protection for computer programs, Process of obtaining patent – application, examination, opposition and sealing of patents, Patent cooperation treaty and grounds for opposition, Rights and obligations of patentee, Duration of patents – law and policy considerations, Infringement and related remedies.

TOTAL LECTURES

30 Hours

Books:

- 1. B.S. Patil, Legal Aspects of Building and Engineering Contracts, 1974.
- 2. The National Building Code, BIS, 2017
- 3. RERA Act,2017
- 4. Meena Rao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset.
- 5. Neelima Chandiramani (2000), TheLawof Contract: An Outline, 2nd Edn. Avinash Publications Mumbai.
- 6. Kwatra G.K. (2005), The Arbitration & Conciliation of Law in India with case law on UNCITRAL Model Law on Arbitration, Indian Council of Arbitration.
- 7. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 8. T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House.
- 9. Bare text (2005), Right to Information Act.
- 10. O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers.
- 11. K.M. Desai(1946), The Industrial Employment (Standing Orders)Act.
- 12. Rustamji R.F., Introduction to the Law of Industrial Disputes, Asia Publishing House.
- 13. Vee, Charles &Skitmore, Martin (2003) Professional Ethics in the Construction Industry, Engineering Construction and Architectural management, Vol.10, Iss2,pp 117-127, MCB UPLtd.
- 14. American Society of Civil Engineers (2011) ASCE Code of Ethics Principles Study and application.
- 15. Ethics in Engineering- M.W.Martin&R.Schinzinger, McGraw-Hill.
- 16. Engineering Ethics, National Institute for Engineering Ethics, USA.
- 17. www.ieindia.org
- 18. Engineering ethics: concepts and cases C. E. Harris, M.S. Pritchard, M.J. Rabins.
- 19. CONSTRUCTION CONTRACTS, http://www.jnormanstark.com/contract.htm.
- 20. Internet and Business Handbook, Chap 4, CONTRACTS LAW,http://www.laderapress.com/laderapress/contractslaw1.html.
- 21. Contract & & agreementshttp://www.tco.ac.ir/law/English/agreements/General/Contract%20Law/C.htm
- 22. Contracts, http://206.127.69.152/jgretch/crj/211/ch7.ppt
- 23. Business & Personal Law. Chapter 7. "How Contracts Arise", http://yucaipahigh.com/schristensen/lawweb/lawch7.ppt
- 24. Types of Contracts, http://cmsu2.cmsu.edu/public/classes/rahm/meiners.con.ppt
- 25. Types of contracts and important provisions., http://www.worldbank.org/html/opr/consult/guidetxt/types.html
- 26. Contract Types / Pricing Arrangements Guideline- 1.4.G (11/04/02), http://www.sandia.gov/policy/14g.pdf.

TECHNO INDIA UNIVERSITY WESTBENGAL

					W.	E	5 1	B	E	N	G	Α	L		
		PROGRAM OUTCOMES (PO)													M C (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	1	3	2	3	1	2	2	1			
CO2	1	2	1	1	1	3	2	3	2	2	2	2			
CO3	2	2	2	2	2	2	2	3	1	3	3	2			
CO4	1	2	2	2	1	3	2	3	2	3	3	2			
CO5	1	1	2	1	1	3	3	3	2	2	2	2			
CO6	1	2	2	2	2	3	2	3	2	3	3	2			
	1.33	1.67	1.67	1.50	1.33	2.83	2.17	3.00	1.67	2.50	2.50	1.83			

TECHNO INDIA UNIVERSITY WESTBENGAL WesstBENGAL Program: B. Tech. in Civil Engineering Year, Semester: 8th Yr., 8th Sem. Course Title: Repairs and Rehabilitation of Structures (Elective-VII) Subject Code: TIU-UCE-E470 Contact Hours/Week: 3–0–0 (L–T–P) Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the causes of distress and deterioration in concrete and masonry structures.
- 2. Learn the importance of maintenance, inspection, and assessment of damaged structures.
- 3. Study various materials and techniques used for repair and rehabilitation of structures.
- 4. Develop an understanding of retrofitting methods and strengthening techniques for different structural elements.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Explain the fundamental causes of structural deterioration, including material degradation, environmental effects, and loading conditions.	K2
CO2	Describe various assessment techniques, including non-destructive testing (NDT) and visual inspection, to evaluate structural damage.	K2
CO3	Apply appropriate repair and strengthening techniques for different types of structural defects based on engineering standards and best practices.	K3
CO4	Demonstrate the use of advanced materials, such as fiber-reinforced polymers (FRP) and high-performance concrete, for structural rehabilitation.	K3
CO5	Develop strategies for maintenance, retrofitting, and life-cycle enhancement of existing structures, ensuring safety and durability.	K3
CO6	Integrate sustainability concepts into structural rehabilitation, considering cost, environmental impact, and long-term performance.	K3

COURSE CONTENT:

MODULE 1:	Introduction	8 Hours								
Maintenance, rehabilitation, repair, retrofit and strengthening, need for rehabilitation of structures. Cracks in R.C. buildings-Various cracks in R.C. buildings, causes and effects. Maintenance- Maintenance importance of maintenance, routine and preventive maintenance. Damages to masonry structures-Various damages to masonry structures and causes										
MODULE 2:	Repair materials	9 Hours								
Various repair r safety precaution Polymer Concret	naterials, Criteria for material selection, Methodology of selections for handling and applications of repair materials, Special mortar e and Mortar, Quick setting compounds, Grouting materials, Gas	on, Health and s and concretes, forming grouts,								
Sulphoalumate	grouts, Polymer grouts, Acrylate and Urethane grouts. Bondir	ng agents-Latex								

WEST BENGAL

emulsions, Epoxy bonding agents. Protective coatings-Protective coatings for Concrete and Steel, FRP sheets.

MODULE 3: Damage diagnosis and assessment

14 Hours

Visual inspection, Non Destructive Testing using Rebound hammer, Ultra sonic pulse velocity, Semi destructive testing, Probe test, Pull out test, Chloride penetration test, Carbonation, Carbonation depth testing, Corrosion activity measurement Substrate preparation-Importance of substrate/surface preparation, General surface preparation methods and procedure, Reinforcing steel cleaning.

Crack repair MODULE 4:

14 Hours Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing, Autogenous healing, Overlays, Repair to active cracks, Repair to dormant cracks. Corrosion of embedded steel in concrete, Corrosion of embedded steel in concrete, Mechanism, Stages of corrosion damage, Repair of various corrosion damaged of structural elements (slab, beam and columns).Jacketing-Jacketing, Column jacketing, Beam jacketing, Beam Column joint jacketing, Reinforced concrete jacketing, Steel jacketing, FRP jacketing. Strengthening-Strengthening, Beam shear strengthening, Flexural strengthening. 45 Hours

TOTAL LECTURES

Books:

- 1. Repair and protection of concrete structures by Noel P.Mailvaganam, CRC Press, 1991.
- 2. Concrete repair and maintenance Illustrated by Peter.H.Emmons, Galgotia publications Pvt. Ltd., 2001.
- 3. "Earthquake resistant design of structures" by Pankaj agarwal, Manish shrikande, PHI, 2006.
- 4. Failures and repair of concrete structures by S.Champion, John Wiley and Sons, 1961.
- 5. Diagnosis and treatment of structures in distress by R.N.Raikar Published by R & D Centre of Structural Designers and Consultants Pvt.Ltd, Mumbai.
- 6. Handbook on repair and rehabilitation of RCC buildings, CPWD, Government of India.
- 7. Handbook on seismic retrofit of buildings, A. Chakrabarti et.al., Narosa Publishing House, 2010.

		PROGRAM OUTCOMES (PO)													PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	2	2	1	1	2	1	0	1	1	2					
CO2	3	3	2	3	2	1	2	1	0	1	2	2					
CO3	3	3	3	3	3	2	2	1	1	2	3	3					
CO4	2	3	3	3	3	2	2	1	1	2	3	3					
CO5	2	3	3	3	3	3	3	2	1	2	3	3					

	T	E	CF	IN	IC) [N	DI	A	U	N	IV	E]	RS	ITY
U					W	E	S 7	ΓI	B E	N	G	Α	L		
CO6	2	2	3	3	3	3	3	2	1	3	3	3			
	2.5	2.67	2.67	2.83	2.5	2	2.33	1.33	0.67	1.83	2.5	2.67			
Program: B	. Tecl	n. in C	Civil H	Engine	eering	5		Year	, Sen	nester	: 8th	Yr., 8	8th Sen	n.	
Course Title: Industrial Structures (Elective- VIII) Subject Code: TIU-UCE-E480															
Contact Hours/Week: 2–0–0 (L–T–P) Credit: 2															

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the classification, layout planning, and essential requirements of industrial structures.
- 2. Analyze and design various industrial components such as gantry girders, machine foundations, and steel connections.
- 3. Design specialized industrial structures, including reinforced concrete bunkers, silos, chimneys, and cooling towers.
- 4. Understand the behavior and design principles of folded plates, cylindrical shells, and machine foundations.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Understand the classification, functional requirements, and structural considerations of industrial structures.	K2
CO2	Apply design principles for gantry girders, steel beam connections, and unbraced industrial frames.	K3
CO3		
	Analyze and design block-type machine foundations as per IS 2974.	K4
CO4	Design reinforced concrete bunkers, silos, chimneys, and cooling towers as per IS codes.	K5
CO5	Evaluate the structural behavior of folded plates, cylindrical shells, and machine foundations.	K5
CO6	Develop innovative and sustainable industrial structural designs considering safety, stability, and functional efficiency.	K6

COURSE CONTENT:

MODULE 1:	Functional design of industrial buildings	8 Hours
Classification of	industrial structures - layout planning requirements - Guidelines fr	om factories act
- Lighting - Illu	mination levels - Natural / Mechanical ventilation - Fire safety	requirements -
Corrosion protec	tion - Protection against noise - Cladding systems - vibration isol	ation techniques
- Industrial floor	rs. General overview of Thermal power plant / Nuclear power p	lant structures /
Process plant ste	elwork - conveyor structures - Boiler supporting structures - Subst	ation structures.

WESTBENGAL

MODULE 2:	Braced Industrial buildings	7 Hours								
Unbraced Industrial frames - Gantry girders - Design of steel beam connections - Flexible & Rigid										
(Bolted and welded types). Machine foundations - Types - Design Requirements - Analysis and										
design of block t	ype machine foundations (IS 2974 method).									
MODULE 3:	Design of Industrial Structures	9 Hours								
Design of Reinforced concrete bunkers and silos as per IS:4995. Tall Chimneys (RCC) – Types - Chimney sizing parameters - Overview of wind and temperature effects - Design principles of Reinforced concrete chimneys as per IS:4998. Cooling Towers – Types and functions - Design principles of RC natural draught cooling towers as per IS:11504										
MODULE 4:	Concrete Shell Structures	6 Hours								
Folded plate and cylindrical shell structures; Introduction, structural behaviour of long and short shells, beam and arch action, analysis and design of cylindrical shell structures, Analysis and design of folded plates; Machine foundations; introduction, machine vibration, structural design of foundation to rotary machines, impact machines, vibration characteristics, design consideration of foundation to impact machine, grillage, pile and raft foundation.										
TOTAL LECTURES 30 Hours										

Books:

- 1. Ramamrutham.S., "Design of Reinforced Concrete Structures", Dhanpat Rai Publishing Company, 2007.
- 2. Varghese.P.C., " Limit State Design of Reinforced Concrete", Prentice Hall of India Eastern Economy Editions, 2nd Edition, 2003.
- 3. Bhavikatti.S.S., "Design of Steel Structures", J.K. International Publishing House Pvt.Ltd., 2009.

			J		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	2	1	2	1	2	2	2	2			
CO2	3	3	3	2	3	1	2	1	2	2	2	2			
CO3	3	3	3	2	3	2	2	2	2	2	2	3			
CO4	3	3	3	2	2	3	3	3	2	3	2	3			
CO5	3	2	3	3	3	2	2	1	3	3	2	3			
CO6	3	2	3	3	3	3	3	3	3	3	3	3			
	3.00	2.50	2.83	2.17	2.67	2.00	2.33	1.83	2.33	2.50	2.17	2.67			

COURSE OBJECTIVE :

Enable the student to:

- 1. Bridge the gap between classroom learning and real-world application by providing hands-on experience in civil engineering projects.
- 2. Enhance technical skills, including design, analysis, project management, and the use of engineering software.
- 3. Familiarize interns with industry standards, practices, and technologies used in civil engineering.
- 4. Gain insights into the various phases of a project, from planning and design to construction and maintenance.
- 5. Build connections with industry professionals, peers, and mentors, which can aid in future career opportunities.
- 6. Provide insights into various career paths within civil engineering, helping interns identify their areas of interest.

			I		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3	
CO1	3	0	2	0	0	0	0	0	0	0	0	0			
CO2	3	2	0	2	2	0	0	0	0	0	0	0			
CO3	0	2	2	0	0	0	0	0	0	0	0	0			
CO4	0	0	0	2	2	0	0	0	2	0	2	0			
CO5	0	0	0	0	0	2	2	2	0	0	0	0			
CO6	0	0	0	0	0	0	0	0	0	3	2	3			
	1.00	0.67	0.67	0.67	0.67	0.33	0.33	0.33	0.33	0.50	0.67	0.50			

COURSE OBJECTIVE:

Enable the student to:

- 1. Expertise by focusing on the implementation, testing, and refinement of their proposed engineering solutions.
- 2. Apply advanced analytical techniques, validate their findings through experimental or simulation-based approaches, and enhance project management skills.
- 3. Develop professional reporting and presentation abilities to effectively communicate their research outcomes to technical and non-technical audiences.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Implement the research plan by conducting computational modeling and	K3
	experimental studies.	
CO2	Analyze and validate data by comparing research outcomes with existing	K4
	standards, codes, and literature.	
CO3	Evaluate research findings through error analysis, sensitivity studies, and	K5
	validation techniques.	
CO4	Extend the research study by incorporating parametric variations, case	K6
	studies, or advanced techniques.	
CO5	Develop technical documentation and research papers following academic	K5
	and industry standards.	
CO6	Present research findings effectively through seminars, reports, and project	K5
	defense.	

			J		PROGRAM SPECIFIC OUTCOMES (PSO)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	2	-	-	2	2	2	3			
CO2	3	3	3	3	3	2	2	2	2	2	2	3			
CO3	3	3	3	3	3	3	2	2	2	2-	3	3			
CO4	3	3	3	3	3	3	3	2	2	3	3	3			
CO5	3	3	3	3	3	3	3	3	3	3	3	3			

A	T	E	CF	IN	IC) I	N	D	[A	U	N	IV	E	RSI	TY	r
				_	W	E	S]	Г]	BE		G	A	L			
C06	3	3	3	3	3	3	3	3	3	3	3	3				
	3.00	3.00	3.00	3.00	3.00	2.67	2.60	2.40	2.33	2.60	2.67	3.00				