

Syllabus for

M.Tech in Civil Engineering

AY 2024-2025

1st Semester

Department of Civil Engineering

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem
Course Title: Advanced Numerical Analysis	Subject Code: TIU-PMA-T115
Contact Hours/Week: 4–0–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Learning the Numerical techniques to obtain approximate solutions of various mathematical problems which cannot be solved analytically.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	To solve a system of linear equations through direct methods.	К3
C02	To deduce a system of linear equations through indirect methods.	K4
CO3	To calculate eigen value problem.	K4
C04	To apply numerical methods to approximate a function.	К3
C05	To deduce least square curve fitting.	K4
C06	To examine numerical solution of initial value problems.	K4

MODULE 1:		8 Hours		
Solution of Simul	Solution of Simultaneous Linear Equations - Direct Methods - Gauss Elimination, Gauss Jordan, LU			
Decomposition, N	Aatrix Inversion.			
MODULE 2:		8 Hours		
Iterative Methods	– Gauss - Jacobi, Gauss – Seidel			
MODULE 3:		4 Hours		
Relaxation metho	od. Necessary and sufficient conditions for convergence. Speed	of convergence.		
(Proofs not required) S.O.R. and S.U.R. methods. Gerschgorin's circle theorem. (Statement only).				
MODULE 4:		5 Hours		
Eigen value probl	em – Numerical largest value, Determination of eigen value by iterati	ve methods.		
MODULE 5:		5 Hours		
Quadratic Approximation, Cubic Spline Interpolation.				
MODULE 6:		7 Hours		

Least Square Curv	ve Fitting, nonlinear regression		
MODULE 7:		8 Hours	
Numerical solution of initial value problems by Euler, Modified Euler, Runge-Kutta and Predictor- Corrector method.			
TOTAL LECTURES 45 Hours			

Text Books:

- 1. Dr. B. S. Grewal Numerical Methods in Engineering and Science
- 2. K Das Numerical Methods

	PROGRAM OUTCOMES (PO)							PF SI OU	ROGRA PECIF TCOM (PSO)	AM IC 1ES			
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3		2	2						1			
CO2	3		3	2						2			
CO3	3		2	2						1			
C04	3	2	2	3						2			
C05	3	2	3	2						2			
C06	3	2	3	3						3			
	3	2	2.5	2.33						1.83			

TECHNO INDIA UNIVERSITY WESTBENGAL

rogram: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem
Course Title: Structural Dynamics	Subject Code: TIU-PCE-T103
Contact Hours/Week: 3–0–2 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1- Understand the fundamental concepts of structural dynamics, including single-degree and multidegree freedom systems, and analyze their response to various types of excitations.
- 2- Apply analytical and numerical methods, such as modal analysis and approximate techniques, to evaluate dynamic responses in structures subjected to external forces, including earthquake excitations.
- 3- Develop proficiency in random vibration theory, including response analysis using Fourier transform methods, and understand the significance of power spectral density functions in structural dynamics.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the fundamental principles of structural dynamics, including free and forced vibrations of single-degree-of-freedom (SDOF) systems.	К2
CO2	Analyze and compute the response of multi-degree-of-freedom (MDOF) systems using modal analysis techniques.	КЗ
CO3	Differentiate and classify the behavior of structures subjected to various dynamic loads, including wind, blast, and seismic forces.	K4
CO4	Examine and interpret earthquake-induced structural responses and appraise seismic design provisions from relevant codes.	K4
CO5	Utilize and demonstrate the use of modern computational tools and software for structural dynamics analysis and earthquake-resistant design.	К3
C06	Critically evaluate and develop seismic mitigation strategies for structures by integrating advanced engineering solutions and sustainability considerations.	K4

MODULE 1	INTRODUCTION TO STRUCTURAL DYNAMICS AND FREE VIBRATION ANALYSIS	5 HOURS	
Fundamentals of structural dynamics, concepts of mass, stiffness, and damping. Free vibra single-degree-of-freedom (SDOF) systems, including natural frequency, period, and ampli Damping effects and types, practical applications of free vibration analysis for assessing st behavior under minor disturbances.			
MODULE 2	FORCED VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS	6 HOURS	
Response of S	SDOF systems to various types of forced vibrations (harmonic, period	lic, transient).	

W E S T B E N G A L

Resonance, phase angle, and dynamic magnification. Solutions for undamped and damped forced vibrations, response under arbitrary and impulse loading. Introduction to vibration control using smart materials (e.g., piezoelectric, shape memory alloys), Use of Tuned Mass Dampers (TMDs) in skyscrapers and bridges

MODULE 3	MULTI-DEGREE-OF-FREEDOM (MDOF) SYSTEMS	7 HOURS		
Modeling MD	OF structures, equations of motion, natural modes of vibration. Introduc	tion to modal		
analysis, solvir	ng dynamic response of structures with multiple degrees of freedom, inclu-	ding buildings		
and bridges.				
MODULE 4	NUMERICAL METHODS IN STRUCTURAL DYNAMICS	7 HOURS		
Numerical app	proaches such as Newmark-Beta method, Wilson-Theta method, and	l other time-		
integration tec	chniques. Application of numerical methods to analyze time-history	responses in		
earthquake eng	ineering and wind loading scenarios.			
MODULE 5	RESPONSE SPECTRUM ANALYSIS	7 HOURS		
Importance of	f response spectrum analysis in earthquake-resistant design. Con-	struction and		
interpretation	of response spectra, role of damping and period in response determination	tion. Practical		
applications in	seismic design and structural analysis under earthquake loads.			
MODULE 6	STRUCTURAL DYNAMICS IN SEISMIC DESIGN APPLICATIONS	7 HOURS		
Application of	structural dynamics principles to seismic design. Seismic design criteria,	base isolation		
techniques, im	portance of damping in seismic response mitigation. Case studies of real-	world seismic		
designs, perfor	mance-based design for dynamic loading conditions.			
MODULE 7	SPECIAL TOPICS IN STRUCTURAL DYNAMICS	6 HOURS		
Advanced top	ics in structural dynamics: soil-structure interaction, dynamic behavior	f of high-rise		
buildings, effects of blast and impact loads. Exploration of current research trends, complex dynamic				
phenomena in	phenomena in specialized applications, advancements in dynamic analysis tools and techniques.			
TOTAL		45 HOURS		

Books:

- 1. Chopra,A.K.,Dynamics of Structures:Theory and Applications to Earthquake Engineering,Prentice Hall/Pearson Education
- 2. Clough, R.W. and Penzien, J., Dynamics of structures, McGrawHill, Inc., NewYork
- 3. Craig, R.R., Structural Dynamics: An Introduction to Computer Methods, Wiley New York
- 4. Rao, S.S., Mechanical Vibrations, Pearson
- 5. Thomson, W.T., Theory of Vibration with Application, CRC Press
- 6. Newland, D.E., An Introduction to Random Vibrations ,Spectral and Wavelet Analysis, Courier Dover Publications

PROGRAM **SPECIFIC PROGRAM OUTCOMES (PO) OUTCOMES** (PSO) C01 CO2 CO3 C04 C05 C06 2.67 2.83 2.83 2.67 2.0 2.67 1.83 0.67 1.67 2.83

TECHNO IND	IA UNIVERSITY
	B E N G A L
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem
Course Title: Matrix Computer Method of Structural Analysis	Subject Code: TIU-PCE-T105
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1- With a comprehensive understanding of matrix methods for structural analysis.
- 2- Develop proficiency in computational techniques for analyzing complex structural systems.
- 3- Emphasize the formulation and application of stiffness and flexibility methods in structural ```
- 4- Enhance skills in coding and utilizing structural analysis software for efficient problem-solving.
- 5- Apply matrix methods to real-world engineering challenges effectively.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall the fundamental concepts of matrix methods in structural analysis, including stiffness and flexibility methods.	K1
CO2	Identify different types of structural systems (trusses, beams, frames) and their representation in matrix form.	K1
CO3	Explain the formulation of element and global stiffness matrices for various structural elements	К2
CO4	Illustrate the direct stiffness method and its application to solve structural problems.	К2
C05	Develop and solve equilibrium equations for complex structures using matrix methods.	К3
C06	Implement numerical techniques and computer algorithms for structural analysis using programming or finite element software	К3

MODULE 1	INTRODUCTION TO MATRIX METHODS IN STRUCTURAL ANALYSIS	6 HOURS		
Overview of structural analysis and the role of matrix methods. Introduction to basic concepts such as degrees of freedom, nodal displacements, and boundary conditions. Fundamentals of matrix algebra and its application in structural analysis. Importance of coordinate systems and vector transformations. Comparison between classical and matrix methods, highlighting their respective advantages and applications.				
MODULE 2	STIFFNESS METHOD FOR STRUCTURAL ANALYSIS	7 HOURS		
Formulation of stiffness matric multi-node system and solving economic method in real-	f stiffness matrices for 1D, 2D, and 3D structural elements. Development ces for beams, trusses, and frames. Process of assembling the global stiffn tems, with considerations for numerical stability. Application of boundar pullibrium equations using the stiffness method. Practical applications of world structural systems.	nt of member ess matrix for ary conditions f the stiffness		

A	FECHNO INDIA UNIVERS	SITY					
	WESTBENGAL						
MODULE 3	FLEXIBILITY (FORCE) METHOD OF STRUCTURAL ANALYSIS	6 HOURS					
Fundamentals flexibility maturn multi-member flexibility methadvantages in o	of the flexibility method and its significance in structural analysis. De rices for statically indeterminate structures. Formulation of compatibility structures. Methods for determining member forces and displacement hod. Comparison between flexibility and stiffness methods to understand different scenarios.	velopment of conditions for nts using the their relative					
MODULE 4	DIRECT STIFFNESS METHOD	7 HOURS					
Formulation of for trusses, be conditions in d for large-scale stiffness metho	f direct stiffness matrices for different types of structures. Step-by-step so eams, and frames using the direct stiffness method. Use of displacem irect stiffness applications. Techniques for simplifying and optimizing mat e structural systems. Case studies demonstrating practical applications od.	lution process ent boundary rix operations of the direct					
MODULE 5	COMPUTER IMPLEMENTATION OF MATRIX METHODS	5 HOURS					
Fundamentals of coding for matrix operations in structural analysis, using tools such as MATLAB and Python. Development of algorithms for stiffness and flexibility analysis. Creation of scripts for automated matrix assembly and solution procedures. Methods for validating computational models with theoretical examples. Applications of coding for analyzing large and complex structures							
MODULE 6	NONLINEAR ANALYSIS IN MATRIX METHODS	7 HOURS					
Introduction to nonlinearities, nonlinear equi	o nonlinear analysis and its relevance in structural engineering. Diffe including material, geometric, and boundary conditions. Iterative method librium equations. Nonlinear matrix formulations in the stiffness method	rent types of ls for solving nod. Practical					

MODULE 7 APPLICATIONS AND ADVANCED TOPICS							
Eigenvalue and	d modal analysis for evaluating the dynamic response of structures. Stal	bility analysis					
using matrix i	methods, including buckling analysis of columns and frames. Introduc	ction to finite					
element metho	ds (FEM) as an extension of matrix methods. Use of structural analysis sol	ftware such as					
SAP2000, ETA	ABS, and ANSYS for solving complex engineering problems. Future trends	s and research					
applications in	matrix computer methods.						
TOTAL		45 hours					

Books:

- 1. W. Weaver Jr. and J. M. Gere, *Matrix Analysis of Framed Structures*, 3rd Edition, Springer, 2012.
- 2. C. S. Reddy, Basic Structural Analysis, 3rd Edition, McGraw Hill Education, 2010.
- 3. J. L. Meek, *Matrix Structural Analysis*, McGraw Hill Education, 2001.

examples of nonlinear behavior in reinforced concrete and steel structures.

- 4. W. McGuire, R. H. Gallagher, and R. D. Ziemian, *Matrix Structural Analysis*, 2nd Edition, John Wiley & Sons, 2000.
- 5. S. Rajasekaran and G. Sankarasubramanian, *Computational Structural Mechanics*, PHI Learning, 2001.

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
C01	3	2	1	2	2					2				
CO2	3	3	2	3	2					2				
CO3	3	3	3	3	2				2	3				
C04	3	3	3	3	2	2			2	3				
C05	3	3	3	3	2	3			3	3				
C06	3	3	3	3	3	3	2	2	3	3				
	3	2.8	2.5	2.8	2.16	2.6	2	2	2.5	2.6				

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem			
Course Title: Prestressed Concrete	Subject Code: TIU-PCE-E101A			
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3			

Enable the student to:

- 1- Understand the fundamental concepts, advantages, and construction principles of precast and prestressed concrete systems.
- 2- Analyze and design prestressed concrete members considering strength, serviceability, and various prestressing methods.
- 3- Evaluate the behavior of prestressed structural elements, including anchorage zones, composite construction, and indeterminate structures.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the fundamental concepts, advantages, and limitations of precast and prestressed concrete.	K1
CO2	Analyze the different methods of prestressing and their effects on structural members.	K2
CO3	Evaluate the losses in prestress and their influence on member behavior.	КЗ
CO4	Design prestressed concrete members for flexure and shear as per codal provisions.	КЗ
C05	Assess the stresses in anchorage zones of prestressed members and design end blocks using standard guidelines.	К3
C06	Apply the concepts of partial prestressing, composite construction, and prestressing of indeterminate structures in practical applications.	K3

MODULE 1	INTRODUCTION TO PRE-STRESSED CONCRETE	6 HOURS					
Fundamental concepts of pre-stressed concrete, including the need for pre-stressing and its advantages							
over conventio	nal reinforced concrete. Different methods of pre-stressing, including pre-t	ensioning and					
post-tensioning	g. Materials used in pre-stressed concrete, such as high-strength concrete ar	nd steel, and					
their significan	ce in enhancing structural performance.						
MODULE 2	ANALYSIS OF PRE-STRESSED CONCRETE BEAMS	7 HOURS					
Analysis of pre	e-stressed concrete beams under different loading conditions. Basic concept	ts of stress					
distribution in	pre-stressed members, load balancing, and linear and non-linear stress calc	ulations.					
Examination o	f rectangular, T-beams, and I-sections with respect to bending, shear, and to	orsional					
resistance.							
MODULE 3	LOSSES IN PRE-STRESS	6 HOURS					
Different types of pre-stress losses, including elastic shortening, creep, shrinkage, relaxation of steel,							
anchorage slip, and frictional losses. Methods to quantify these losses and assess their impact on the							
performance of	performance of pre-stressed members. Calculation techniques for determining effective pre-stress after						
accounting for	all losses.						

	WESTBENGAL									
MODULE 4	DESIGN OF PRE-STRESSED CONCRETE MEMBERS	6 HOURS								
Design principles for pre-stressed concrete members, with a focus on simply supported beams under										
bending, shear	bending, shear, and torsion. Guidelines and requirements from design codes such as IS: 1343. Practical									
design example	design examples of rectangular and flanged beams, emphasizing durability, serviceability, and safety									
considerations										
MODULE 5	ANCHORAGE ZONE STRESSES AND DESIGN	5 HOURS								
Stresses develo	pred in the anchorage zone of post-tensioned members, including bursting	spalling and								
transverse tens	ile stresses. Design methods for anchorage zones and reinforcement detaili	ng to resist								
these stresses.	Real-world applications and design examples demonstrating the critical rol	e of								
anchorage in p	re-stressed concrete structures.									
MODULE 6	COMPOSITE CONSTRUCTION IN PRE-STRESSED CONCRETE	8 HOURS								
Composite cor structural perfo and design prin Applications a projects.	struction techniques integrating pre-stressed and reinforced concrete for en- ormance(UHPC-Prestressed Composite Beams for Modular Bridge System nciples for composite beams, precast pre-stressed elements, and slab system nd advantages of composite construction, particularly in bridge and high-ri-	hanced s) Analysis 1s. se building								
MODULE 7	APPLICATIONS AND ADVANCED TOPICS IN PRE- STRESSED CONCRETE	7 HOURS								
Applications of pre-stressed concrete in bridges, high-rise buildings, and industrial structures(Example- Precast Prestressed Hollow Core Slabs for High-Rise Buildings: A Sustainability Perspective), Advanced topics such as partially pre-stressed sections, long-span structures, and circular pre-stressed concrete elements like tanks and pipes. Emerging trends and technologies in pre-stressing, including segmental and precast construction(for example Carbon Fiber-Reinforced Prestressing Tendons for Corrosion-Free Structures), providing a modern perspective on the subject.										
TOTAL		45 HOURS								

Books:

- 1. T. Y. Lin and N. H. Burns, Design of Prestressed Concrete Structures, 3rd Edition, John Wiley & Sons, 1981.
- 2. N. Krishna Raju, Prestressed Concrete, 5th Edition, Tata McGraw Hill, 2012.
- 3. P. Dayaratnam, Prestressed Concrete Structures, Oxford & IBH Publishing, 2000.
- 4. S. Ramamrutham, Prestressed Concrete, Dhanpat Rai Publishing, 2017.
- 5. S. K. Mallick and A. P. Gupta, *Prestressed Concrete*, Oxford & IBH Publishing, 2007.
- 6. M. K. Hurst, Prestressed Concrete Design, 2nd Edition, E & FN Spon, 1998.

			Р	ROGR	AM OU	JTCOM	IES (PO))			PF S OU	ROGRA PECIF TCOM (PSO)	AM IC 1ES
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3	2	2	1	-	1	-	-	-	1			

ß		TF		HN	10	IN		IA	Uľ	NIN	Æ	R	SI	ΓΥ
					W]	E S	Τ	B E	Ν	G A	L			
CO2	3	3	3	2	-	1	-	-	-	2				
CO3	3	3	3	3	1	1	-	-	-	2				
C04	3	3	3	3	-	2	1	-	-	2				
C05	3	3	3	2	-	2	1	-	-	2				
C06	3	3	3	3	-	3	1	1	1	3				
	3	2.8	2.8	2.3	1	1.6	1	1	1	2.5				

Program: M. Tech. in Civil Engineering	Year, Semester: 1stYr. , 1 st Sem
Course Title: Elective-II (Numerical Methods in Structural Engineering)	Subject Code: TIU-PCE-E103A
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1- Understand fundamental concepts of probability and statistics for structural engineering applications.
- 2- Apply numerical techniques to solve systems of linear equations relevant to structural analysis.
- 3- Implement numerical methods for solving ordinary and partial differential equations encountered in structural problems.
- 4- Analyze the stability and consistency of numerical schemes used in engineering computations.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental concepts of numerical methods and their applications in	K1
	structural engineering.	
CO2	Understand and apply numerical techniques to solve ordinary and partial	K2
	differential equations relevant to structural analysis.	
CO3	Utilize finite element methods for modeling and analyzing structural	K2
	systems.	
C04	Assess the accuracy, stability, and convergence of numerical solutions in	КЗ
	structural analysis.	
C05	Implement numerical methods using programming tools for solving	КЗ
	structural engineering problems.	
C06	Evaluate the effectiveness of numerical methods in handling real-world	K2
	structural engineering challenges.	

MODULE 1	E 1 INTRODUCTION TO NUMERICAL METHODS AND ERROR ANALYSIS						
Role of numerical methods in structural engineering and their importance in computational analysis.							
Overview of d	interent types of errors in numerical calculations, including truncation and r	ound-off					
errors. Error es	timation techniques and the significance of accuracy and stability in numer	rical					
computations u	used for engineering applications.						
MODULE 2	SOLUTION OF LINEAR ALGEBRAIC EQUATIONS	6 HOURS					
Various metho	ds for solving linear algebraic equations, which are fundamental in structur	al analysis.					
Techniques such as Gaussian elimination, LU decomposition, and iterative approaches like Jacobi and							
Gauss-Seidel methods. Applications in structural systems like trusses and frames, with a focus on							
computational	implementation.						

WESTBENGAL

MODULE 3	EIGENVALUE PROBLEMS IN STRUCTURAL ENGINEERING	5 HOURS					
Importance of eigenvalue problems in understanding the dynamic behavior and stability of structures. Methods for calculating eigenvalues and eigenvectors, including the power method and QR algorithm. Applications in determining natural frequencies and mode shapes of structural systems.							
MODULE 4	NUMERICAL INTEGRATION AND DIFFERENTIATION	5 HOURS					
Numerical inte	gration and differentiation techniques used in structural engineering. Metho	ods such as					
the trapezoidal	rule, Simpson's rule, and Gaussian quadrature. Applications include calcul	lating					
deflections, slo	pes, and areas under structural curves to analyze bending and shear behavi	or.					
MODULE 5	FINITE DIFFERENCE METHOD (FDM) AND APPLICATIONS	5 HOURS					
Introduction to	the finite difference method (FDM) for solving differential equations in str	ructural					
analysis. Appro	oximation of partial differential equations (PDEs) related to structural beha	vior,					
including defle	ction in beams and plate bending problems. Boundary value problems and	hands-on					
exercises in FI	DM application.						
MODULE 6	FINITE ELEMENT METHOD (FEM) FOR STRUCTURAL ANALYSIS	5 HOURS					
Overview of th discretization, elements. Forn systems(FEM- Comparative S	te finite element method (FEM) and its application in structural engineering shape functions, and stiffness matrix formulation for elements like bars, be nulation and solution of basic FEM problems with an emphasis on complex Based Seismic Analysis of Mid-Rise Structures Using Python Libraries (e.g. tudy of FEM vs. FDM for Solving Structural Stability Problems	g. Concepts of ams, and 2D structural g., FEniCS)),					
^	· · · · ·						
MODULE 7	OPTIMIZATION TECHNIQUES IN STRUCTURAL ENGINEERING	5 HOURS					
Exploration of optimization techniques, including linear and nonlinear programming and gradient- based optimization methods. Objective function formulation, constraint handling, and applications in structural design optimization, such as weight minimization and material cost efficiency in structural components.							
MODULE 8	ADVANCED TOPICS AND COMPUTATIONAL TOOLS	9 HOURS					
Advanced topic such as MATL numerical meth perspectives.	cs, including nonlinear numerical methods and an introduction to computat AB and Python for numerical analysis. Case studies demonstrating the app nods in real-world structural engineering challenges, integrating theoretical	ional tools lication of and practical					
TOTAL		45 HOURS					

Books: .

- 1. M.K. Jain, S.R.K. Iyengar, and R.K. Jain Numerical Methods: Problems and Solutions, Wiley Eastern Limited.
- 2. S. Ross Introduction to Probability Models, Wiley India.
- 3. A.M. Gun, M.K. Gupta, and B.S. Gupta Fundamentals of Statistics. .
- 4. J.B. Scarborough Numerical Mathematical Analysis, Oxford & IBH Publishing Co. Pvt. Ltd.
- 5. R.W. Hamming Numerical Methods for Scientists and Engineers, McGraw-Hill.
- 6. J.H. Mathews and K.D. Fink Numerical Methods Using MATLAB, Pearson Education.

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
C01	3	2	3	3	2	-	-	-	1	-				
CO2	3	3	2	2	2	-	-	-	1	-				
CO3	3	2	2	2	2	-	-	-	1	-				
C04	3	2	2	3	2	-	-	-	1	-				
C05	3	2	2	2	2	-	-	-	1	-				
C06	3	3	2	2	3	-	-	-	1	-				
	3	2.3	2.16	2.3	2.1 6	-	-	-	1	-				

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem
Course Title: Elective-III (Advanced RCC)	Subject Code: TIU-PCE-E105A
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1- Understand advanced concepts and methodologies in reinforced cement concrete (RCC) design.
- 2- Apply relevant design codes and standards to ensure structural safety and performance.
- 3- Analyze RCC structures under different loading conditions and optimize structural design.
- 4- Utilize software tools for modeling, analysis, and design of advanced RCC structures.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Identify the advanced material properties and behavior of concrete and reinforcement, including high-performance and fiber-reinforced concrete.	K1
CO2	Explain the principles of durability and serviceability in RCC structures, including environmental effects and maintenance strategies.	K2
CO3	Apply advanced design codes and standards (IS, ACI, Eurocodes) in RCC design for structural integrity and safety.	КЗ
CO4	Identify the behavior of complex RCC structural elements like deep beams, flat slabs, silos, and pile foundations using modern techniques.	K1
C05	Explain the design of special RCC structures like water tanks, chimneys, and machine foundations, including crack width calculation and control.	K2
C06	Apply RCC structural modeling techniques using advanced software tools (SAP2000, ETABS, STAAD.Pro) for design and analysis.	К3

MODULE 1	INTRODUCTION TO ADVANCED RCC DESIGN	4 HOURS						
Overview of advanced concepts in RCC design, including a comparison of traditional and modern								
design approaches. Importance of advanced design techniques in improving structural performance and								
safety. Introduction to Performance based philosophy.								
MODULE 2	MATERIAL PROPERTIES AND BEHAVIOR	5 HOURS						
Exploration of	f material properties and behavior in RCC, including concrete(UHPC	, Self-healing						
concrete etc) a	nd reinforcement(GFRP, BFRP, CFRP and shape memory alloy). Mechan	ical properties						
of concrete, s	tress-strain relationships, and the influence of different types of rein	forcement on						
structural beha	vior.							
MODULE 3	ADVANCED TECHNOLOGIES IN RCC DESIGN	4 HOURS						
Integration of	advanced technologies in RCC design, including fiber-reinforced co	oncrete, high-						
performance	concrete, and sustainability considerations. Advancements in materia	als and their						
applications in structural design.								
MODULE 4	MODULE 4 DESIGN FOR DURABILITY AND SERVICEABILITY 4 HOURS							
Principles of designing RCC structures for durability and serviceability. Effects of environmental								
factors, maintenance strategies, and importance of serviceability in design.								

T

W E S T B E N G A L

MODULE 5	ADVANCED DESIGN CODES AND STANDARDS	4 HOURS							
Study of latest	Study of latest design codes and standards governing RCC design, including Eurocodes, ACI codes,								
and IS codes. I	and IS codes. Emphasis on adhering to standards to ensure safety and structural integrity.								
MODULE 6	DESIGN OF COMPLEX STRUCTURAL ELEMENTS	5 HOURS							
Design conside corbels, flat sla	Design considerations and methodologies for complex RCC structural elements, including deep beams, corbels, flat slabs, silos & bunkers, piles & pile foundations.								
MODULE 7	DESIGN OF SPECIAL STRUCTURES	5 HOURS							
Structural syst	ems, analysis & design of special structures. Analysis & design techniq	ues for water							
towers, calcula	tion of crack widths and crack control designs, RCC chimney, and machine	e foundations.							
MODULE 8	SOFTWARE APPLICATIONS IN RCC DESIGN	6 HOURS							
Introduction to	o software tools used in RCC design and analysis. Hands-on experience	with software							
packages such	as SAP2000, ETABS, and STAAD.Pro for modeling, analysis, and design	processes.							
MODULE 9	CASE STUDIES AND PRACTICAL APPLICATIONS	8 HOURS							
Analysis of real-world case studies in advanced RCC design. Exploration of successful projects,									
lessons learned, and application of advanced design principles in practice. Encouraging critical									
thinking about	design challenges and solutions.								
TOTAL		45 HOURS							

Books: .

- 1. S. S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, 2002.
- 2. C. F. Gerald and P. O. Wheatley, *Applied Numerical Analysis*, Pearson, 2004.
- 3. R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of Finite Element Analysis, Wiley, 2001.
- 4. K. A. Smith, R. W. Hutton, and J. S. Picher, Numerical Methods in Structural Engineering, McGraw-Hill, 1976.

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
C01	3	2	-	-	-	-	-	-	-	-				
CO2	3	3	2	-	-	-	-	-	-	2				
CO3	3	3	3	3	-	-	-	-	-	3				
C04	3	3	2	3	2	-	-	-	-	3				
C05	3	3	3	3	2	-	-	-	2	3				
C06	3	3	3	3	2	3	-	-	3	3				
	3	2.8	2.6	3	2	3			2.5	2.8				

TECHNO IND	IA UNIVERSITY				
	BENGAL				
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem				
Course Title: Structural Engineering Laboratory	Subject Code: TIU-PCE-S105				
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5				

Enable the student to:

- 1- Know advanced programming concepts and their application in structural engineering using latest software applications.
- 2- Develop computational models for structural analysis and design using modern engineering tools.
- 3- Apply numerical methods, mix design principles, and strength prediction techniques in solving real-world structural engineering problems using state-of-the-art software applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Understand the fundamentals of Python programming and apply control	К2					
001	structures to automate calculations.	ILL					
CO2	Apply Python libraries (NumPy, Pandas, Matplotlib) for array manipulation and data visualization in structural engineering.	К3					
CO3	Develop scripts for matrix operations, structural analysis, and finite K3						
CO4	Perform mix design calculations and analyze the impact of various K4 parameters on concrete strength using Python.						
C05	Analyze the effectiveness of machine learning techniques in Python for K4 predicting concrete compressive strength .						
C06	Evaluate the applicability of Python-based numerical methods for solving structural engineering problems.	K4					

MODULE 1	INTRODUCTION TO PYTHON AND BASICS	6 HOURS					
Overview of Python programming language, history, and evolution. Basic Python syntax and structure.							
Data types and	d variables. Arithmetic and logical operations. Reading and writing dat	a. Formatting					
output. File has	ndling in Python.						
MODULE 2	CONTROL STRUCTURES IN PYTHON	6 HOURS					
Control structu	res (if statements, loops). Practice problems using Python. Programming	g using loops,					
conditional sta	tements, and formatted output.						
MODULE 3	PYTHON FUNCTIONS AND MODULES	6 HOURS					
Writing and us	sing functions. Importing and utilizing built-in and external modules. Cre	ating reusable					
functions and r	nodular programming concepts. Examples of functions relevant to structura	al analysis.					
MODULE 4	ARRAY PROCESSING AND MIX DESIGN USING PYTHON	6 HOURS					
Introduction to NumPy arrays. Array operations and manipulation. Multi-dimensional arrays and							
matrix operations in Python. Basic mix design calculations using Python for proportioning concrete							
ingredients. Analyzing the effect of water-cement ratio, aggregate gradation, and admixtures using							

WEST **BENGAL**

Python-based data visualization (Matplotlib, Pandas).

STRENGTH PREDICTION AND APPLICATIONS IN **MODULE 5** STRUCTURAL ENGINEERING

21 HOURS

Structural analysis using Python. Using libraries like NumPy, SciPy, and Matplotlib for solving structural problems. Design and analysis of Reinforced Concrete (RCC) structures. Finite Element Analysis (FEA) using Python-based tools (e.g., FEniCS, PyNite). Developing scripts for beam and frame analysis. Strength prediction of concrete using machine learning models in Python (Scikit-Learn, TensorFlow). Implementing regression models to predict compressive strength based on mix proportions and curing conditions. Individual or group projects applying Python to solve real-world structural engineering problems. TOTAL

45 HOURS

Books: .

- "Python for Engineers and Scientists" Kuldeep Singh . 1.
- "Numerical Methods in Engineering with Python" Jaan Kiusalaas 2.
- 3. "Machine Learning for Civil Engineering" Anil K. Bera & S. Rajasekaran

	PROGRAM OUTCOMES (PO)											ROGRA PECIF TCOM (PSO)	AM IC 1ES
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3			2									
CO2	3			2									
CO3	3		2	3									
C04	3		2	2		1							
C05			3	3					2				
C06	3		2	3					2				
	3		2.24	2.5		1			2				

TECHNO IND	IA UNIVERSITY				
	BENGAL				
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem				
Course Title: Advanced Software Laboratory	Subject Code: TIU-PCE-S107				
Contact Hours/Week: 0–0–3 (L–T–P)	Credit: 1.5				

Enable the student to:.

- i. Software tools commonly used in structural and civil engineering for analysis and design.
- ii. Develop computational skills to perform mathematical and matrix operations related to structural analysis.
- iii. Enhance data visualization abilities by generating graphs and charts for effective project reporting.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental concepts of programming, algorithms, and software development methodologies.	K1
C02	Identify various advanced software tools, libraries, and frameworks used in computational analysis and simulation.	K1
CO3	Explain the working principles of software development life cycle (SDLC), debugging techniques, and version control systems.	K2
CO4	Interpret and analyze algorithms for optimization, numerical methods, and data processing in engineering applications.	K2
CO5	Apply programming skills to develop, test, and optimize computational models for engineering simulations.	К3
C06	Implement advanced coding techniques and software tools to solve real- world problems in structural engineering.	К3

MODULE 1	INTRODUCTION TO NUMERICAL COMPUTATIONS	6 HOURS							
Overview of numerical methods and their role in structural analysis and design. Importance of computational tools in civil engineering.(use of some free/open sources-opensees, SAFI)									
MODULE 2	FUNDAMENTALS OF SOFTWARE FOR STRUCTURAL ANALYSIS	6 HOURS							
Introduction to commonly used software. Understanding the interface, basic operations, and application areas(ETABS/ANSYS/MATLAB)									
MODULE 3	MODELING AND ANALYSIS TECHNIQUES	9 HOURS							
Methods for st	ructural modeling, application of loads, boundary conditions, and analysis	procedures							
MODULE 4	STRUCTURAL DESIGN IMPLEMENTATION USING SOFTWARE	8 HOURS							

Application of computational tools for the design of structural elements and validation of results with standard codes.(ETABS/ANSYS/SAP2000)

MODULE 5 AUTOMATION AND OPTIMIZATION IN STRUCTURAL ANALYSIS

7 HOURS

Introduction to scripting, automation, and optimization techniques for enhancing computational efficiency.

MODULE 6PRACTICAL APPLICATIONS AND CASE STUDIES9 HOURSHands-on practice, case studies, comparative analysis of software results, and report preparation.45 HOURSTOTAL45 HOURS

Books:

- 1. Numerical Methods in Engineering with MATLAB" Jaan Kiusalaas
- 2. "Numerical Methods for Engineers" Steven C. Chapra, Raymond P. Canale
- 3. "Applied Numerical Methods for Engineers and Scientists" Singiresu S. Rao
- 4. . "ÉTABS & SAP2000: Computers & Structures, Inc. Manuals"
- 5. "MATLAB for Engineers" Holly Moore
- 6. "Structural Analysis with MATLAB" F. Yang, X. Kirk Chen, Y. Tsavdaridis

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3		
C01	3	2	3	3	2	-	-	-	1	-					
CO2	3	3	2	2	2	-	-	-	1	-					
CO3	3	2	2	2	2	-	-	-	1	-					
C04	3	2	2	3	2	-	-	-	1	-					
C05	3	2	2	2	2	-	-	-	1	-					
C06	3	3	2	2	3	-	-	-	1	-					
	3	2.3	2.16	2.3	2.1 6	-	-	-	1	-					

TECHNO IND	IA UNIVERSITY				
	BENGAL				
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 1 st Sem				
Course Title: Entrepreneurship Skill Development	Subject Code: TIU-PES-S189				
Contact Hours/Week: 0–0–2 (L–T–P)	Credit: 1				

Enable the student to:.

- 1- Research and analyze current trends in civil engineering, particularly in structural engineering and materials, through case studies and literature reviews.
- 2- Develop well-structured conference papers that address sustainability challenges in civil engineering, incorporating real-world examples and case studies.
- 3- Enhance technical communication skills by presenting and discussing research findings at conferences, improving public speaking and professional networking abilities.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Identify entrepreneurship opportunities in civil engineering and explain the role of innovation in structural engineering and materials.	K2
CO2	Analyze current trends in sustainable construction using research methodologies and industry reports.	K4
CO3	Evaluate sustainability challenges in structural engineering and assess the environmental and economic impact of new materials and techniques.	K4
C04	Develop well-structured conference papers focused on sustainability and innovative solutions in civil engineering.	К3
CO5	Demonstrate effective public speaking and presentation skills for technical content in research seminars and conferences.	К3
C06	Apply the peer review process by evaluating research papers constructively and revising based on feedback.	K4

Module1	INTRODUCTION TO ENTREPRENEURSHIP IN CIVIL ENGINEERING									
Overview of entrepreneurship opportunities in civil engineering, emphasizing the impor										
innovation in structural engineering and materials. Discussion on the role of entreprener										
sustainable con	struction practices.									
Module 2	RESEARCH TECHNIQUES FOR CURRENT TRENDS									
Methods for id	lentifying emerging trends in civil engineering, including industry reports	and case								
studies on ad	vancements in sustainable construction. Analysis of research methodole	ogies for								
identifying and	evaluating new technologies									
Module 3	SUSTAINABILITY ISSUES IN CIVIL ENGINEERING									
Understanding	key sustainability challenges in structural engineering, formulating research	questions								
related to sustainability, and evaluating the environmental and economic impact of new materials and										
techniques in co	techniques in construction.									

W E S T B E N G A L

WRITING CONFERENCE PAPERS Module 4 Structure and key components of an effective conference paper, techniques for writing impactful papers on sustainability and innovative solutions, and ethical considerations in research and technical writing Module 5 **PRESENTATION SKILLS** Techniques for effective public speaking, crafting engaging visual aids for technical content, and handling Q&A sessions to confidently present research findings in seminars and conferences. Module 6 PEER REVIEW PROCESS Understanding the peer review process for conference submissions, techniques for constructive evaluation of peer research papers, and revising research papers based on feedback. Module 7 **MOCK CONFERENCE PRESENTATIONS** Conducting mock presentations to simulate real conference environments, engaging in discussions and Q&A sessions, and evaluating presentation styles and technical content delivery

Module 8 CASE STUDY & TECHNICAL PAPER PRESENTATION

Preparation of a conference paper on a chosen topic related to sustainability and innovation in structural engineering, followed by peer review and final submission. The final presentation will be conducted in a simulated conference setting

TOTAL

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
C01	3				2	2				2				
CO2	3		3	2		3				3				
CO3	2	2	3	2	2	2				3				
C04	3	2	2			2	2		3	3				
C05								3	3	3				
C06	3		3				3	3	3	2				
	2.8	2	2.75	2	2	2.5	2.5	3	3	2.66				

2nd Semester

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem				
Course Title: Theory of Elasticity and Plasticity	Subject Code: TIU-PCE-T102				
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3				

COURSE OBJECTIVE:

Enable the student to:

- 1- Provide a comprehensive understanding of elasticity and plasticity in materials.
- 2- Focus on the mechanical behavior of materials under various loading conditions.
- 3- Introduce analytical approaches for modeling stress and strain in elastic and plastic materials.
- 4- Develop essential skills for advanced structural analysis and design applications.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO1	Define and explain the fundamental concepts of elasticity and plasticity, including stress-strain relationships and material behavior under loading.	K1
CO2	Identify and describe stress and strain tensors, compatibility equations, and equilibrium conditions in elastic materials.	K2
CO3	Apply mathematical formulations such as Airy's stress function to solve two- dimensional elasticity problems in engineering structures.	K3
CO4	Analyze the torsion of non-circular sections and determine stress distribution in beams, shafts, and other structural members.	К3
CO5	Evaluate yield criteria, plastic flow rules, and material hardening models in plasticity theory for structural applications.	К3
C06	Solve real-world problems in structural mechanics using advanced elasticity and plasticity principles.	К3

MODULE 1:	INTRODUCTION TO ELASTICITY	9 HOURS								
Overview of elasticity concepts. Stress, strain, and their interrelationships. Stress-strain relationships										
for linear elastic materials. Properties of stress and strain tensors. Fundamental equations of										
equilibrium. Plan	e stress and plane strain conditions. Compatibility equations.	-								
MODULE 2:	TWO-DIMENSIONAL PROBLEMS IN ELASTICITY	6 HOURS								
Formulation and solution of 2D elasticity problems. Airy's stress function and applications in										
Formulation and	d solution of 2D elasticity problems. Airy's stress function and a	pplications in								
rectangular and	d solution of 2D elasticity problems. Airy's stress function and a polar coordinates. Stress distribution in cantilever beams, thick-walled of	pplications in cylinders, and								

6 HOURS

W E S T B E N G A L

MODULE 3: | TORSION OF NON-CIRCULAR SECTIONS

Theory of torsion for non-circular sections (rectangular, elliptical). Prandtl's stress function and its applications. Stress and displacement field derivations. Engineering applications in shafts, beams, and other structural members.

MODULE 4:	INTRODUCTION TO PLASTICITY	9 HOURS							
Fundamentals of	plasticity. Stress-strain relationships beyond the elastic limit. Yield cr	riteria: Tresca							
and von Mises. Flow rule and hardening rules. Plastic deformation behavior in ductile materials.									
Applications in n	Applications in metal forming and structural design.								
MODULE 5:	PLASTICITY MODELS AND SOLUTIONS	6 HOURS							

Perfectly plastic and strain-hardening material models. Solutions for one-dimensional plastic deformation. Slip-line field theory. Plastic collapse analysis. Applications to beams, plates, and frames in the plastic range.

MODULE 6: ADVANCED TOPICS IN ELASTICITY AND PLASTICITY 9 HOURS

Anisotropic elasticity and viscoelasticity. Plasticity under cyclic loading. Applications in fracture mechanics, fatigue, and residual stresses. Computational and analytical tools for material behavior modeling
TOTAL
45 HOURS

Books:

- 1. Timoshenko, S. P., and Goodier, J. N., *Theory of Elasticity*, McGraw-Hill, 1970.
- 2. Sadhu Singh, *Theory of Elasticity*, Khanna Publishers, 2003.
- 3. Chakrabarty, J., *Theory of Plasticity*, Butterworth-Heinemann, 2006.
- 4. Mendelson, A., *Plasticity: Theory and Applications*, Krieger Publishing, 1983.
- 5. Ugural, A. C., Advanced Mechanics of Materials and Applied Elasticity, Pearson, 2011.

	PROGRAM OUTCOMES (PO)												PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3		
C01	3		-	-	-	-	-	-	-	-					
CO2	3	2		-	-	-	-	-	-	-					
CO3	3	3	2	2	-	-	-	-	-	-					
C04	3	3	2	2		-	-	-	-	-					
C05	3	3	3	3	2	-	-	-	-	-					
C06	3	3	3	3	2	2	-	-	-	2					
	3	2.8	2.5	2.5	2	2	-	-	-	2					

TECHNO IND	IA UNIVERSITY				
	BENGAL				
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem				
Course Title: Finite Element Analysis	Subject Code: TIU-PCE-T104				
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3				

Enable the student to:.

- 1- Provide a comprehensive understanding of the fundamental principles and formulation techniques of the Finite Element Method (FEM) in structural analysis.
- 2- Equip students with the ability to apply FEM to solve structural problems involving beams, frames, plates, shells, and three-dimensional stress analysis.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental principles and solution techniques in FEM.		
CO2	Explain different solution approximations and discretization methods.		
CO3	Apply element formulations and numerical integration techniques in FEM.	K3	
CO4	Analyze framed structures, plane stress, plane strain, and shell problems.		
CO5	Develop computational algorithms for FEM applications in structural analysis.	К3	
C06	Evaluate eigenvalue problems and dynamic responses using FEM.	КЗ	

MODULE 1	INTRODUCTION TO FINITE ELEMENT ANALYSIS	6 HOURS					
Introduction to	Introduction to finite element analysis, basic principles, and applications in structural mechanics.						
Overview of e	asticity and steps involved in FEA.						
MODULE 2	FINITE ELEMENT FORMULATION TECHNIQUES	6 HOURS					
Mathematical	formulation of FEM, virtual work and variational principles, Galerkin	method, and					
displacement a	pproach. Development of stiffness matrix and boundary conditions. Mesh	Convergence					
Study		-					
MODULE 3	ELEMENT PROPERTIES	6 HOURS					
Characteristics	of various finite elements, natural coordinates, triangular and rectange	ular elements,					
Lagrange and	Serendipity elements. Isoparametric formulation, stiffness matrix com	putation, and					
numerical inte	gration in 1D, 2D, and 3D.	-					
MODULE 4	ANALYSIS OF FRAME STRUCTURES	6 HOURS					
Stiffness of tru	iss and beam members, analysis of trusses and continuous beams, finite ele	ment analysis					
of plane frame	s, grids, and space frames.						
MODULE 5	FEM FOR TWO AND THREE DIMENSIONAL SOLIDS	6 HOURS					
Application of	FEM to 2D and 3D solids: constant strain triangle, linear strain triangl	e, rectangular					
elements. Nu	elements. Numerical evaluation of stiffness, stress computation, geometric nonlinearity, static						

W E S T B E N G A L

condensation, axisymmetric elements, and 3D element formulation.Brief about FE modeling of ultrahigh-performance fiber-reinforced concrete (UHPFRC), case study on real-world UHPFRC structure (e.g., *Sherbrooke footbridge, Canada* or *Lapa Bridge, Portugal*)

MODULE 6	FEM FOR PLATES AND SHELLS	6 HOURS			
Analysis of plate and shell structures, finite element methods for thin and thick plates, sk					
finite strip met	hod, and shell structure analysis.				
MODULE 7	ADDITIONAL APPLICATIONS OF FEM	9 HOURS			
Advanced FEM	A applications in elastic stability, fluid mechanics, and dynamic analysis of	structures.			
TOTAL		45 HOURS			

Books:

- 1. Reddy, J. N. An Introduction to the Finite Element Method, McGraw-Hill.
- 2. Zienkiewicz, O. C. & Taylor, R. L. The Finite Element Method, Butterworth-Heinemann.
- 3. Bathe, K. J. Finite Element Procedures, Prentice Hall.
- 4. Cook, R. D., Malkus, D. S., & Plesha, M. E. Concepts and Applications of Finite Element Analysis, Wiley.
- 5. Chandrupatla, T. R. &Belegundu, A. D. Introduction to Finite Elements in Engineering, Pearson Education.

	PROGRAM OUTCOMES (PO)										PF SI OU	ROGRA PECIF TCOM (PSO)	AM IC IES
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3	2	1	2	-	-	-	-	-	2			
CO2	3	3	2	3	-	-	-	-	-	2			
CO3	3	3	3	3	2	-	-	-	2	3			
C04	3	3	3	3	2	2	I	I	2	3			
C05	3	3	3	3	2	3	-	-	3	3			
C06	3	3	3	3	3	3	2	2	3	3			
	3	2.8	2.5	2.8	2.2	2.6	2	2	2.5	2.6			

Program: M. Tech. in Civil Engineering	Year, Semester: 1stYr. , 2 nd Sem
Course Title: Repair And Rehabilitation Of Structures	Subject Code: TIU-PCE-E102A
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Enable the student to:

- 1- Identify the causes of deterioration and distress in structures.
- 2- Understand and plan appropriate repair and rehabilitation strategies.
- 3- Select suitable repair materials and techniques for structural restoration.
- 4- Develop retrofitting strategies and formulate guidelines for repair management of deteriorated structures.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Explain the causes of structural deterioration and damage mechanisms in concrete, steel, and masonry structures.	K2
CO2	Identify and assess structural distress using non-destructive testing (NDT) and condition evaluation techniques.	К3
CO3	Differentiate between various materials and techniques used for repair, retrofitting, and strengthening of structures.	K4
CO4	Demonstrate appropriate selection and application of repair materials and methodologies for restoring structural integrity.	K3
C05	Examine and evaluate rehabilitation strategies considering durability, sustainability, and cost-effectiveness.	K4
C06	Investigate the role of modern repair technologies and best practices in extending the service life of structures.	K4

MODULE 1	INTRODUCTION TO REPAIR AND REHABILITATION	6 HOURS				
Fundamentals of repair and rehabilitation, significance of maintaining structural integrity, and ethical						
considerations.	Discussion on structural deterioration causes and timely interventions.	Case studies				
illustrating con	nmon repair scenarios in civil engineering.					
MODULE 2	DETERIORATION MECHANISMS	7 HOURS				
Examination o	Examination of deterioration causes, including environmental effects, material fatigue, corrosion, and					
structural overloading. Analysis of physical and chemical processes affecting concrete and steel						
structures. Development of effective repair strategies based on deterioration mechanisms.						

	FECHNO INDIA UNIVERS	SITY				
	WESTBENGAL					
MODULE 3	ASSESSMENT TECHNIQUES	7 HOURS				
Methods for as	ssessing existing structures, including visual inspection, non-destructive t	esting (NDT),				
and structural	health monitoring, Use of drones for inspection.Interpretation of ND	T results and				
decision-makin	ng for repairs. Practical skills in evaluating structural conditions and repair	needs.				
MODULE 4	REPAIR MATERIALS AND TECHNIQUES	8 HOURS				
Selection and	properties of repair materials, including epoxy resins, fiber-reinforced j	polymers, and				
specialized co	ncrete mixtures. Common repair techniques such as patching, streng	gthening, and				
retrofitting, wi	th a focus on material compatibility and long-term performance.					
MODULE 5	STRUCTURAL REHABILITATION STRATEGIES	8 HOURS				
Strengthening	and rehabilitation strategies for beams, columns, and foundations. Impl	ementation of				
external prestr	ressing and advanced composite materials. Consideration of original	load-carrying				
capacity and se	erviceability in repair design.					
MODULE 6	CASE STUDIES AND FUTURE TRENDS	9 HOURS				
Case studies of	of successful repair and rehabilitation projects, discussing best practice	s and lessons				
learned. Conte	learned. Contemporary challenges, sustainability considerations, and emerging technologies. Future					
trends, including	ng smart materials and adaptive reuse of structures.					
TOTAL		45 HOURS				

Books:

- 1. "Concrete Repair and Maintenance Illustrated" Peter H. Emmons
- 2. "Handbook on Repair and Rehabilitation of RCC Buildings" CPWD (Central Public Works Department, India)
- 3. "Concrete Technology: Theory and Practice" M.S. Shetty & A.K. Jain
- "Structural Rehabilitation of Old Buildings" Poul Beckmann & Robert Bowles
 "Repair and Rehabilitation of Structures" P.C. Varghese

	PROGRAM OUTCOMES (PO)										PR SH OU	OGRA PECIFI TCOM (PSO)	M IC IES
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3	2	2	2	1	2	1	0	1	2			
CO2	3	3	3	2	2	2	1	1	1	3			
CO3	3	3	3	3	2	3	2	1	2	3			
C04	3	3	3	3	3	3	2	1	2	3			
C05	3	3	3	3	3	3	3	1	2	3			
C06	2	3	3	3	3	3	3	1	2	3			
	2.83	2.83	2.83	2.67	2.33	2.67	2.00	0.83	1.67	2.83			

TECHNO INDIA UNIVERSITY WESTBENGAL

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem		
Course Title: Structural Stability	Subject Code: TIU-PCE-E104A		
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3		

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental concepts of structural stability, buckling, and post- buckling behaviour of structures.	K1
CO2	Identify various advanced software tools, libraries, and frameworks used in computational analysis and simulation.	K1
CO3	Explain the principles of stability analysis for columns, beams, frames, and plates under various loading conditions.	К2
C04	Interpret analytical and numerical methods for solving stability problems, including energy methods and differential equations.	К2
CO5	Apply classical and modern approaches to analyze and design stable structures under axial, lateral, and combined loads.	К3
C06	Evaluate the stability of real-world engineering structures such as bridges, towers, and tall buildings using theoretical and computational techniques.	К3

MODULE 1	INTRODUCTION TO STABILITY CONCEPTS	5 HOURS								
Criteria for des	sign: Stability, Strength, and Stiffness									
Classical conce	Classical concept of stability									
Linear and nor	Linear and nonlinear behavior of structures									
Stability of dis	crete systems									
Stability of con	ntinuous systems									
Stability of Str	uctures under Progressive Collapse Scenarios									
Influence of M	aterial Anisotropy on Global Stability									
MODULE 2	8 HOURS									
Axial-flexural	buckling									
Lateral bracing	g of columns									
Combined axia	ll-flexural-torsion buckling									
Stability of High	gh-Strength Concrete Columns									
MODULE 3	STABILITY OF FRAMES	7 HOURS								
Member buckl	ing vs. global buckling									
Slenderness ra	tio of frame members									
MODULE 4	STABILITY OF BEAMS	7 HOURS								
Lateral-torsion	Lateral-torsional buckling of beams									
Torsional effect	ets on stability									

TECHNO INDIA UNIVERSITY WESTBENGAL

MODULE 5	STABILITY OF PLATES
Axial-flexural	buckling of plates

Shear-flexural buckling

Buckling under combined loads

MODULE 6 ADVANCED STABILITY CONCEPTS

9 HOURS

9 HOURS

Introduction to inelastic buckling Dynamic stability Time-Dependent Buckling of Structures under Creep and Fatigue Brief on dynamic Stability of Offshore Wind Turbine Structures

TOTAL

45 HOURS

Books:

- 1. Bažant, Zdeněk P., and Luigi Cedolin. *Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories.* World Scientific, 2010.
- 2. Ashwini Kumar. Stability of Structures. Allied Publishers Ltd.
- 3. Timoshenko, S. P., and Gere, J. M. Theory of Elastic Stability. McGraw Hill.

		PROGRAM OUTCOMES (PO)													
	1	2	3	4	5	6	7	8	9	10	1	2	3		
C01	3	2	3	3	2	-	-	-	1	-					
CO2	3	3	2	2	2	-	-	-	1	-					
C03	3	2	2	2	2	-	-	-	1	-					
C04	3	2	2	3	1	-	-	-	1	-					
C05	3	2	2	2	2	-	-	-	1	-					
C06	3	3	2	2	2	-	-	-	1	-					
	3	2.3	2.16	2.3	1.8 3	-	-	-	1	-					

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem				
Course Title: Offshore Structures	Subject Code: TIU-PCE-E106B				
Contact Hours/Week: 4–0–0 (L–T–P)	Credit: 4				

Enable the student to:

- 1- Equip students with fundamental knowledge of offshore structures, including environmental loads, stability, and hydrodynamic considerations.
- 2- Develop skills in analyzing and designing offshore platforms, pipelines, and joints by applying industry standards and computational techniques.
- 3- Enable students to evaluate structural safety under extreme conditions such as fire, blast, and seismic events.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Identify the types of offshore structures, their functions, and applications in various marine environments.	K1
CO2	Explain the environmental and geotechnical considerations affecting offshore structures, including loads and foundation types.	K2
CO3	Apply design principles and load analysis for fixed offshore structures such as jackets, gravity-based structures, and tripods.	К3
CO4	Identify the characteristics, stability, and motion response of floating offshore structures and their mooring systems.	K1
C05	Explain the dynamic response, fatigue analysis, and maintenance strategies for offshore structural integrity.	K2
C06	Apply offshore industry standards, safety regulations, and risk management practices in real-world projects.	К3

MODULE 1	INTRODUCTION TO OFFSHORE STRUCTURES	5 HOURS							
Definition and types of offshore structures (fixed, floating, compliant towers, etc.). Shore Protection									
Structures. Ch	allenges and considerations in offshore engineering. Overview of offs	hore industry							
sectors (oil &	gas, renewable energy, etc.). Docks & Harbors, Jetty.Hybrid offshore	structures for							
multi-purpose	utility, 3D-printed concrete and modular marine infrastructure								
MODULE 2	DESIGN CONSIDERATIONS	6 HOURS							
Environmental	loads (waves, wind, currents, ice) and their effects on offshore structures.	Geotechnical							
considerations	: soil mechanics, seabed conditions, foundation types. Structural materials a	and corrosion							
protection in n	narine environments. Advanced materials: FRP, corrosion-resistant alloys, o	coatings							
MODULE 3	FIXED STRUCTURES	5 HOURS							
Types: jackets	, gravity-based structures (GBS), tripods. Design principles and load paths.	Installation							

6 HOURS

5 HOURS

6 HOURS

6 HOURS

6 HOURS

WESTBENGAL

methods and considerations. Examples of notable fixed offshore platforms.

MODULE 4 | FLOATING STRUCTURES

Types: semi-submersibles, tension leg platforms (TLPs), spar platforms, FPSOs. Stability and motion response in waves. Mooring systems and risers. Applications and advantages of floating structures. Floating Offshore Wind Turbines (FOWTs)

MODULE 5 DYNAMIC RESPONSE AND STRUCTURAL INTEGRITY

Analysis of dynamic response to environmental loads. Fatigue and reliability considerations. Inspection, maintenance, and repair strategies.

MODULE 6 EMERGING TRENDS AND FUTURE DIRECTIONS

Advances in offshore wind energy: floating wind turbines. Subsea structures and underwater technology. Sustainability and environmental impact considerations.

MODULE 7 | CASE STUDIES AND PRACTICAL APPLICATIONS

Real-world examples of offshore structure projects. Lessons learned from past failures and successes. Integration of new technologies and innovative designs.

MODULE 8 | REGULATORY AND SAFETY STANDARDS

International codes and standards (e.g., API, ISO, ABS rules). Safety considerations and risk management in offshore operations. Environmental regulations and compliance. **45 HOURS**

TOTAL

Books: .

- 1. Chakrabarti, S.K. Handbook of Offshore Engineering, Elsevier.
- 2. API RP 2A-WSD Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms, American Petroleum Institute.
- 3. DNV-OS-F101 Submarine Pipeline Systems, Det Norske Veritas.
- 4. Bhattacharya, S.K. Design of Steel Structures for Offshore Structures, Wiley.
- 5. Taranath, B.S. Offshore Structures: Design, Construction, and Maintenance, CRC Press.

		PROGRAM SPECIFIC OUTCOMES (PSO)											
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3	2	-	-	-	-	-	-	-	-			
CO2	3	3	2	-	-	-	-	-	-	2			
CO3	3	3	3	3	-	-	-	-	-	3			
C04	3	3	2	3	2	-	-	-	-	3			
C05	3	3	3	3	2	-	-	-	2	3			

ß		TF		HN	NO	IN		IA	UN	NIV	/E	R	SI	ΓΥ
					W]	E S	Т	B E	Ν	G A	L			
C06	3	3	3	3	2	3	-	-	3	3				
	3	2.8	2.6	3	2	3			2.5	2.8				

Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem
Course Title: Term Paper	Subject Code: TIU-PCE-S106
Contact Hours/Week: 0–0–8 (L–T–P)	Credit: 4

Enable the student to:.

- 1- Equip with the skills necessary to conduct a comprehensive literature review on current trends and innovations in civil engineering.
- 2- Identify gaps in existing research and formulate relevant project topics.
- 3- Analyze and evaluate scholarly articles and journals to support project development.
- 4- Select a final project topic that addresses contemporary challenges within the civil engineering field.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental research concepts, including literature review techniques, citation methods, and technical writing.	K1
CO2	Identify relevant research papers, technical reports, and scholarly articles related to the chosen topic.	K1
CO3	Explain key findings from the literature and summarize different methodologies used in previous research.	K2
C04	Interpret research gaps and formulate a structured approach for analyzing the selected topic.	K2
C05	Apply critical thinking and analytical skills to evaluate research findings and propose improvements or new perspectives.	КЗ
C05	Develop a well-structured technical document, adhering to academic writing standards, and present findings effectively.	К3

COURSE CONTENT:

MODULE 1	LITERATURE REVIEW	
Learn techniqu	es for conducting comprehensive literature reviews focusing on current tren	nds in civil
engineering.		

MODULE 2 RESEARCH GAP IDENTIFICATION

Explore methodologies to identify gaps in existing research and formulate relevant project topics.

MODULE 3 CRITICAL ANALYSIS

Engage in the analysis and evaluation of scholarly articles and journals to support research findings and project development.

MODULE 4 PROJECT TOPIC CONCLUSION

TECHNO INDIA UNIVERSITY WESTBENGAL

Guided process to conclude a final project topic that addresses contemporary challenges in civil engineering.

MODULE 5 ACADEMIC WRITING AND PRESENTATION SKILLS

Emphasis on effective academic writing and presentation skills for communicating research effectively. **TOTAL**

		PROGRAM OUTCOMES (PO)													
	1	2	3	4	5	6	7	8	9	10	1	2	3		
C01	3	2	3	3	2	-	-	-	1	-					
C02	3	3	2	2	2	-	-	-	1	-					
CO3	3	2	2	2	2	-	-	-	1	-					
C04	3	2	2	3	1	-	-	-	1	-					
C05	3	2	2	2	2	-	-	-	1	-					
C06	3	3	2	2	2	1	-	-	1	-					
	3	2.3	2.16	2.3	1.8 3	-	-	-	1	-					

Enable the student to:.

- 1- Develop students' ability to research, analyze, and present emerging trends and innovations in structural engineering through seminars and technical discussions.
- 2- Enhance students' communication and critical thinking skills by facilitating interactive discussions, constructive feedback sessions, and the preparation of technical papers for potential conference presentations.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Recall fundamental concepts of technical communication, research methodologies, and presentation techniques.	K1
C02	Identify key research findings, methodologies, and relevant literature to support the seminar topic.	K1
CO3	Explain the objectives, significance, and conclusions of the term paper in a structured and concise manner.	K2
C04	Interpret research data, analytical results, and technical arguments to enhance understanding of the subject.	K2
C05	Apply effective communication and presentation skills to deliver a well- organized seminar on the term paper topic.	КЗ
C06	Develop critical thinking skills by addressing questions, engaging in discussions, and receiving constructive feedback.	К3

			Р	ROGR	AM OU	ΊΤСΟΜ	ES (PC))			PF SI OU	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
C01	3	2	3	3	2	-	-	-	2	1				
CO2	3	3	2	2	2	I	1	I	1	-				
CO3	3	2	2	2	2	-	-	-	2	1				
C04	3	2	2	3	1	-	-	-	1	-				
C05	3	2	2	2	2	-	-	-	2	-				
C06	3	3	2	2	2	-	-	-	2	-				
	3	2.3	2.16	2.3	1.8 3	-	-	-	1.67	-				

TECHNO IND	IA UNIVERSITY					
	BENGAL					
Program: M. Tech. in Civil Engineering	Year, Semester: 1 st Yr., 2 nd Sem					
Course Title: Entrepreneurship Skill Development	Subject Code: TIU-PES-S188					
Contact Hours/Week: 0–0–2 (L–T–P)	Credit: 1					

Enable the student to:.

- 1- Research and analyze current trends in civil engineering, particularly in structural engineering and materials, through case studies and literature reviews.
- 2- Develop well-structured conference papers that address sustainability challenges in civil engineering, incorporating real-world examples and case studies.
- 3- Enhance technical communication skills by presenting and discussing research findings at conferences, improving public speaking and professional networking abilities.

COURSE OUTCOME :

On completion of the course, the student will be able to:

C01	Identify entrepreneurship opportunities in civil engineering and explain the role of innovation in structural engineering and materials.	K2										
CO2	Analyze current trends in sustainable construction using research methodologies and industry reports.	K4										
CO3	Evaluate sustainability challenges in structural engineering and assess the environmental and economic impact of new materials and techniques.											
C04	Develop well-structured conference papers focused on sustainability and innovative solutions in civil engineering.	К3										
C05	Demonstrate effective public speaking and presentation skills for technical content in research seminars and conferences.	К3										
C06	Apply the peer review process by evaluating research papers constructively and revising based on feedback.	K4										

COURSE CONTENT:

MODULE1	INTRODUCTION TO ENTREPRENEURSHIP IN CIVIL ENGINEERING								
Overview of en	trepreneurship opportunities in civil engineering, emphasizing the importance of								
innovation in structural engineering and materials. Discussion on the role of entrepreneurs in									
sustainable cons	struction practices.								
MODULE 2 RESEARCH TECHNIQUES FOR CURRENT TRENDS									
Methods for ide	ntifying emerging trends in civil engineering, including industry reports and case								
studies on advar	ncements in sustainable construction. Analysis of research methodologies for								
identifying and	evaluating new technologies								
MODULE 3	SUSTAINABILITY ISSUES IN CIVIL ENGINEERING								

Understanding key sustainability challenges in structural engineering, formulating research questions

W E S T B E N G A L related to sustainability, and evaluating the environmental and economic impact of new materials and techniques in construction.

MODULE 4 WRITING CONFERENCE PAPERS

Structure and key components of an effective conference paper, techniques for writing impactful papers on sustainability and innovative solutions, and ethical considerations in research and technical writing

MODULE 5 PRESENTATION SKILLS

Techniques for effective public speaking, crafting engaging visual aids for technical content, and handling Q&A sessions to confidently present research findings in seminars and conferences.

MODULE 6 PEER REVIEW PROCESS

Understanding the peer review process for conference submissions, techniques for constructive evaluation of peer research papers, and revising research papers based on feedback.

MODULE 7 MOCK CONFERENCE PRESENTATIONS

Conducting mock presentations to simulate real conference environments, engaging in discussions and Q&A sessions, and evaluating presentation styles and technical content delivery

MODULE 8 CASE STUDY & TECHNICAL PAPER PRESENTATION

Preparation of a conference paper on a chosen topic related to sustainability and innovation in structural engineering, followed by peer review and final submission. The final presentation will be conducted in a simulated conference setting

TOTAL

			Р	ROGR	AM OU	JTCOM	IES (PC))			PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3
C01	3				2	2				2			
CO2	3		3	2		3				3			
CO3	2	2	3	2	2	2				3			
C04	3	2	2			2	2		3	3			
C05								3	3	3			
C06	3		3				3	3	3	2			
	2.8	2	2.75	2	2	2.5	2.5	3	3	2.66			

3rd Semester

Program: M. Tech. in Civil Engineering	Year, Semester:2 nd Yr., 3 rd Sem
Course Title:Progress Report	Subject Code: TIU-PCE-S201
Contact Hours/Week: 0-0-28(L-T-P)	Credit: 14

COURSE OBJECTIVE :

Enable the student to:.

- 1- **Ensure effective project execution** by documenting progress, assessing methodologies, and formulating experimental procedures to maintain alignment with best practices.
- 2- **Enhance problem-solving and decision-making** by evaluating outcomes, analyzing results, and providing insights for necessary project adjustments and improvements.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Apply structured methodologies to monitor and assess the progress of project work.	K3
CO2	Analyze and design experimental setups, selecting appropriate research tools and techniques	K4
CO3	Evaluate collected data using statistical tools and interpret results in alignment with project objectives.	K5
CO4	Develop technical documentation and progress reports with clear and structured writing techniques.	K4
CO5	Demonstrate effective communication through project presentations and discussions.	K3
CO6	Critically assess peer work through reviews and constructive feedback for project improvement.	K5

				P S O	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	1	2	3
CO 1	3	3	3	2	-	-	-	2	3	3			
CO 2	3	3	3	3	-	2	-	2	2	3			
CO 3	3	3	3	3	-	2	-	-	3	3			
CO 4	3	3	2	2	-	-	-	2	3	3			

TECHNO INDIA UNIVERS														
						W E	S	Т	BE	E N	G	A	L	
CO 5	3	2	2	2	-	-	-	3	3	3				
CO 6	3	2	3	2	-	-	-	3	3	3				
	3	2.6 7	2.8 3	2.3 3		2		2.3 3	2.8 3	3				
Prog	ram:	M. Te	ch. in	Civil	Engin	eering	Year, Semester:2 nd Yr., 3 rd Sem							
Cour Repo	se Ti f rt	tle: Se	emina	r on F	Progre	ess	Subject Code:TIU-PCE-S203							
Cont	act H	ours/	Wee	k : 0–0)-40 ((L–T–P)	Cree	Credit: 10]

Enable the student to:.

- 1- **Develop communication and analytical skills** by presenting and defending thesis progress through reports and viva-voce discussions.
- 2- Enhance research impact and critical thinking by reviewing published work, engaging in peer feedback, and refining presentation techniques.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Demonstrate effective research presentation and communication skills.	K3
CO2	Analyze research findings and methodologies critically.	K4
CO3	Defend research methodologies and outcomes in oral examinations.	K4
CO4	Engage in scholarly discussions and peer evaluations.	K3
CO5	Evaluate and integrate feedback to refine research work.	K5
CO6	Develop structured and impactful academic presentations.	K4

				PR SH OU	PROGRAM SPECIFIC OUTCOMES (PSO)								
	1	2	3	4	5	6	7	8	9	10	1	2	3
CO1	3	2	2	2	-	-	-	3	3	3			
CO2	3	3	3	2	-	-	-	3	3	3			
CO3	3	3	3	2	-	-	-	3	3	3			
CO4	3	2	2	2	-	-	-	3	3	3			
CO5	3	3	3	2	-	-	-	3	3	3			
CO6	3	3	3	2	-	-	-	3	3	3			
	3	2.67	2.67	2				3	3	3			

4th Semester

Program: M. Tech. in Civil Engineering	Year, Semester:2 nd Yr., 4 th Sem					
Course Title: Thesis	Subject Code: TIU-PCE-S204					
Contact Hours/Week: 0-0-28(L-T-P)	Credit: 14					

COURSE OBJECTIVE :

Enable the student to:.

- 1- **Ensure project completion and documentation** by finalizing deliverables and compiling a detailed technical report.
- 2- **Develop research and analytical skills** by conducting independent research and applying theoretical knowledge to solve practical problems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Identify and explain research gaps in the chosen domain of civil engineering using a comprehensive literature review.	K4						
CO2	Develop and construct research methodologies, experimental setups, or computational models to address the identified problem.	K4						
CO3	Examine and differentiate various approaches, materials, and techniques to determine optimal solutions for the research problem.							
CO4	Illustrate and demonstrate the research findings through structured reports, presentations, and publications.							
CO5	Compare and question experimental or simulation results to infer meaningful conclusions.							
CO6	Prepare and produce a well-documented thesis following academic and professional guidelines.	K4						

	PROGRAM OUTCOMES (PO)											PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3	
CO1	3	3	3	2	2	2	1	1	3	3				
CO2	3	3	3	3	2	2	2	2	3	3				
CO3	3	3	3	3	2	2	2	2	3	3				
CO4	3	3	3	3	2	3	2	2	3	3				
CO5	3	2	2	2	1	2	1	1	3	3				
CO6	3	2	3	2	3	3	3	3	3	3				
	3	2.67	2.83	2.50	2.00	2.33	1.83	1.83	3	3				

Enable the student to:.

- 1- **Develop effective research communication skills** by presenting and discussing thesis findings in academic and professional settings.
- 2- Enhance critical thinking and analytical abilities by evaluating research implications and engaging in discussions.
- **3- Promote collaboration and peer learning** by providing constructive feedback and participating in interactive Q&A sessions.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO1	Examine and categorize research papers, technical reports, and case studies related to the chosen research domain.	K4
CO2	Develop and construct the research problem statement, objectives, and scope based on a systematic literature review .	K3
CO3	Investigate and differentiate between different methodologies, experimental setups, and computational approaches to determine the most suitable techniques for research.	K4
CO4	Demonstrate and illustrate technical presentations with clarity and precision using appropriate tools.	K3
CO5	Compare and debate research ideas in discussions and infer insights from peer feedback to refine thesis work.	K4
CO6	Prepare and produce structured research summaries, progress reports, and technical documentation.	K4

	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	9	10	1	2	3
CO1	3	3	3	2	2	1	1	1	3	3			
CO2	3	3	3	2	2	2	2	2	3	3			
CO3	3	3	3	3	2	2	2	2	3	3			
CO4	2	2	2	2	1	1	1	1	3	3			
CO5	2	2	3	2	2	2	2	2	3	3			
CO6	2	2	2	2	1	1	1	1	3	3			
	2.50	2.50	2.67	2.17	1.67	1.50	1.50	1.50	3	3			