

M.Tech. Biotechnology AY 2024-25

SEMESTER I

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Plant and Animal Cell Technology	Subject Code:TIU-PBT-T151
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the fundamental techniques of plant and animal cell culture.
- 2. Analyse different culture methods and their applications in biotechnology.
- 3. Develop skills in handling and maintaining plant and animal cell cultures for research and industrial applications.

CO No.	Course Outcome	Knowledge Level (K)
CO-1	Explain the history, principles, and basic setup of plant and animal cell culture laboratories.	K2
CO-2	Demonstrate knowledge of different types of culture media, sterilization techniques, and growth conditions.	K2
CO-3	Analyze different plant and animal cell culture methods and their applications in biotechnology.	K4
CO-4	Apply tissue culture techniques for micropropagation, organogenesis, and somatic embryogenesis.	КЗ
CO-5	Utilize transgenic technology and stem cell research for biotechnological advancements.	К3
CO-6	Evaluate the significance of cell culture techniques in genetic engineering and pharmaceutical research.	КЗ

COURSE CONTENT:

MODULE 1:	Basics of Plant Tissue Culture	8 Hours
methods; Nutr commonly use	ue Culture technique, plant tissue culture lab setup - equipment, sterili ient media: types, micronutrients, macronutrients, vitamins, compositi d nutrient culture, defined and undefined media, growth regulators, su edifferentiation and redifferentiation in plant cells, totipotency.	on of
MODULE 2:	Methods and Applications in Plant Tissue Culture	17 Hours
bud, meristem culture, susper somatic embry protoplast cult haploid plant p conservation. S variation, hard	on, micropropagation method and application, proliferation of axillary culture, virus-free plants, callus culture - induction and regeneration, s asion culture, cellular growth measurement and viability, culture synch ogenesis, organogenesis, organ culture and embryo rescue, protoplast ure, and somatic hybridization, somatic embryogenesis, haploid and de production, production of artificial seeds, cryopreservation, and germp Somaclonal variation in vitro cultured plants, molecular basis of somac ening and greenhouse transfer of tissue culture-raised plants, importa chniques in plant improvement.	single-cell pronization, isolation, oubled lasm lonal
MODULE 3:	Basics of Animal Cell Culture	16 Hours
Laboratory rec materials used cell culture, ser cell lines, cytot separation, Cor	culture, Animal cell culture basic principles, Primary and secondary cel puirements for animal cell culture: Sterile handling area, Sterilization o in animal cell culture, Aseptic concepts, Instrumentation and equipme rum-free and serum-based media, scaling-up, characterization, and pre oxicity and viability assays. Different types of cell cultures, Trypsinizat ntinuous cell lines, Suspension culture, Organ culture, Development of on and maintenance of cell lines, stem cells, Cryopreservation, Common	f different nt for animal eservation of ion, Cell cell lines,
MODULE 4:	Methods and Applications of Apimal Cell Culture	4 Hours
	Methods and Applications of Animal Cell Culture romanipulation of embryos, generation of modified stem cells, transge nock-out animals. Importance of transgenic animals in biotechnology a	

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Bioprocess Engineering and separation Technology	Subject Code:TIU-PBT-T153
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

- 1. This course aims to provide an in-depth understanding of bioprocess engineering principles, bioreactor design, microbial and cell culture techniques, and downstream processing methods.
- 2. The course will emphasize the industrial applications of bioprocess engineering and process scale-up strategies.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Understand enzyme immobilization techniques and mass transfer considerations.	K2
CO-2	Analyze microbial growth kinetics and stoichiometry in bioprocesses.	K4
CO-3	Evaluate different downstream processing techniques for product recovery and purification.	K4
CO-4	Apply principles of bioreactor operation, sterilization, and aeration in industrial processes.	КЗ
CO-5	Develop bioprocess strategies for industrial-scale production and scale-up.	КЗ
CO-6	Implement cost-effective and optimized methods for downstream processing and product recovery.	К3

COURSE CONTENT:

MODULE 1:	Immobilized Enzymes and Industrial Enzymes	5 Hours
Immobilized enzymes: methods, mass transfer considerations; Industrial enzymes.		
MODULE 2:	Microbial Growth and Kinetics	5 Hours
-	wth: Factors affecting microbial growth; Stoichiometry: mass bal	lances;
Stoichiometry	y: energy balances; Growth kinetics; Measurement of growth.	
MODULE 3:	Bioreactors and Fermentation Processes	9 Hours
bioreactors; I Instrumentat Bioseparation Extraction; Ac Description o design and op designing par rheology of fe heat transfer, number, pow	ntroduction to bioreactors; Batch and Fed-batch bioreactors, Commobilized cells; Bioreactor operation; Sterilization; Aeration; Stor; Culture-specific design aspects: plant/mammalian cell cultures: Biomass removal; Biomass disruption; Membrane-based technols of the comparation and Chromatography and the strial Processes and Process findustrial processes; Process flow sheeting; Process economics beration: classification of reactors; Ideal mixed v/s plug flow react ameters for reactors (stirred tank reactor, airlift reactor, plug flow react analysis of dimension less parameters and their application (aer number and Reynold's number; Scale-up of bioprocesses: paratid problems associated with scale-up.	ensors; re reactors. niques; ss economics: . Bioreactor etor; w reactor), ass transfer, ration
MODULE 4:	Bioseparations and Downstream Processing	10 Hours
Engineering principle of bio processing- Upstream production and downstream; Bioprocess design and development from lab to industrial scale; Microbial, animal and plant cell culture platforms. Downstream Processing: Biomass removal and disruption; Centrifugation; sedimentation; Flocculation; Microfiltration; Sonication; Bead mills; Homogenizers; Chemical lysis; Enzymatic lysis; Membrane based purification: Ultrafiltration ; Reverse osmosis; Dialysis ; Diafiltration ; Pervaporation; Perstraction; Adsorption and chromatography: size, charge, shape, hydrophobic interactions, Biological affinity; Process configurations (packed bed, expanded bed, simulated moving beds); Precipitation (Ammonium Sulfate, solvent); Electrophoresis(capillary); Crystallization; Extraction (solvent, aqueous two phase, super critical), Drying; Case studies		
MODULE 5:	Advanced Downstream Processing	16 Hours
Analytical and Isopycnic; Ra separation, Re	separation techniques; Cross flow & End Flow Filtration, Centrifu l Preparative Ultracentrifugation; Different types: Density gradie te zonal centrifugation etc. Cell Disruption Process for intracellul emoval of insoluble's, biomass (particulate debris), Flocculation, n, Centrifugation etc. Membrane based separation (MF and UF) t	ent, ar product

Procedure and Application. Microfiltration, Ultrafiltration, and Reverse Osmosis Precipitation Methods: - Salting in and salting out. Aqueous two-phase extraction and in situ product removal. Chromatographic Separation Techniques, Theory, Types. Gel Permeation, Ion Exchange, Affinity Chromatography, HPLC, UPLC, GC etc. Crystallization:-Principles-Nucleation- Crystal growth-Kinetics. Drying –Principles-Water in biological solids, Vacuum shelf androtary dryer, Freeze dryer and Spray dryer, Packaging and Quality Assurance, Economics and downstream processing in BT: Cost cutting strategies, Optimal methods of product recovery (efficacy and cost effectiveness).

45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Food, Nutrition and Toxicology	Subject Code:TIU-PBT-155
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the fundamental concepts of nutraceuticals, food nutrition, and toxicology.
- 2. Analyze the biochemical significance of carbohydrates, lipids, proteins, and enzymes in human nutrition.
- 3. Explore the role of essential nutrients, dietary components, and their metabolic pathways in health and disease.
- 4. Identify naturally occurring food toxicants, food adulteration practices, and regulatory food laws.
- 5. Examine the significance of fermented foods, prebiotics, probiotics, postbiotics, and antioxidants in human health.

CO	Course Outcome	Knowledge
No.		Level (K)
CO-1	Explain the biochemical and nutritional significance of	К2
	carbohydrates, lipids, and proteins in the human diet.	
CO-2	Assess the metabolic pathways of macronutrients, enzymatic activity,	K2
	and related metabolic disorders.	
CO-3	Investigate the role of dietary fiber, essential fatty acids, and food	K4
	constituents in health and disease prevention.	
CO-4	Identify and analyze food toxicants, their physiological effects, and	КЗ
	food safety regulations.	
CO-5	Evaluate the impact of food adulteration and food laws (HACCP,	КЗ
	FSSAI, ISO-17025) on consumer safety.	
CO-6	Explore the significance of fermented foods, probiotics, prebiotics,	КЗ
	postbiotics, and antioxidants in maintaining gut health.	

COURSE CONTENTS:

MODULE 1:		7 Hours
The concept of carbohydrates, properties. Nut isomerism and atherosclerosis food grains - ha physiological r MODULE 2: Protein: struct	nutraceuticals (therapeutic diets) - a brief account. Nutritional signific lipids - chemistry, metabolism, absorption - dietary source and function tritional requirements. Role of dietary fibre, role of essential fatty acids enzymatic conversions of fatty acid, deficiency and excess of fat - role s. Role of these constituents in food industry. Naturally occurring food aemaglutinins, goitrogens, lathyrogens, and naturally occurring carcino ole. Food additives - colorants, flavour - producing agents and their ide ural and functional characteristics: amino acid, biochemical structure, a sential and non essential amino acids). Qualitative and quantitative de	ance of onal s, cis-trans of fats in toxicants in ogens: their entification. 7 Hours and their role
of amino acid i urine diseases,	n food products, metabolic diseases (alkaptanuria, phenylketonuria, m albinism)	apple syrup
1d, 2d, 3d, 4d structure of protein, peptide bond, Ramachandran plot, solubility of protein, protein digestion, protein deficiency diseases.		
MODULE 3:		6 Hours
Enzyme: classf	ication, michaelismenten equation, protein metabolism, urea cycle, rel	ated disease.
Food browning	g, role of po, ppo	
Fermented food, prebiotics, probiotics, postbiotics, their importance, gut microbiome.		
Plant secondary metabolites and antioxidant.		
i lant becondai	y metabolites and antioxidant.	
	y metabolites and antioxidant. ion and different food laws (haccap etc), fassai, iso-17025.	
	-	25 Hours
Food adulterat MODULE 4: Analysis of olig content - by so	ion and different food laws (haccap etc), fassai, iso-17025. gosacharides from food samples; solvent extraction method for the esti xhlet method; estimation of cholesterol; determination of saponification nic separation of sugars; extraction and estimation of total free phenols of lycopene	mation of oil on number;

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Biochemistry	Subject Code:TIU-PBT-E151
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the fundamental biochemical principles, including **water chemistry**, **pH**, **buffers**, **and osmotic balance**.
- 2. Analyze the **structural and functional aspects of biomolecules** such as carbohydrates, proteins, lipids, nucleic acids, vitamins, and hormones.
- 3. Explore the organization and properties of biological membranes, membrane fluidity, and transport mechanisms.
- 4. Examine the **role of antioxidants, redox signaling, oxidative stress-related diseases, and medicinal foods**.
- 5. Investigate the **structural and functional characteristics of key biomolecules**, including hemoglobin, myoglobin, and chlorophyll.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain the biochemical properties of water, pH, buffers, and their role in biological systems.	K2
CO-2	Describe the structure and function of cell membranes and membrane transport mechanisms.	K2
CO-3	Analyze the structural and functional significance of carbohydrates, proteins, lipids, nucleic acids, vitamins, and hormones.	K4
CO-4	Evaluate the role of hemoglobin, myoglobin, and chlorophyll in biological systems.	К3
CO-5	Assess the impact of oxidative stress, redox signaling, and antioxidants in disease prevention.	КЗ
CO-6	Explore the significance of medicinal foods and their role in maintaining health	К3

COURSE CONTENTS:

MODULE 1:		11 Hours	
Water as uni	versal solvent, pH, Buffer, Blood Buffer, colloidal solution,	osmosis and	
its Maintena	nce, Solution (Normality, Molarity etc.).		
MODULE 2:		3 Hours	
Cell membra	Cell membrane (Fluid Mosaic Model, Membrane Fluidity), Membrane Transport.		
MODULE 3:		10 Hours	
: Structural a	nd Functional details of: Carbohydrate, Protein, Fat, Nuclei	c Acid,	
Vitamins and	l Hormones. Structure and function: Hemoglobin, Myoglobi	in,	
Chlorophyll.			
MODULE 4:		21 Hours	
Antioxidant and Redox Signaling, Oxidative stress related disease, Medicinal foods.			
TOTAL LECTU	RES	45 Hours	

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Advanced Bioanalytical techniques-I	Subject Code:TIU-PBT-L151
Contact Hours/Week: L-T-P: 0-0-4	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop proficiency in **bioanalytical techniques** for biomolecule separation, identification, and characterization.
- 2. Gain hands-on experience in **chromatography**, **electrophoresis**, **and molecular biology techniques**.
- 3. Explore **protein purification**, **enzymatic reactions**, **and immunological assays** in biochemical research.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Perform ion exchange chromatography for protein and biomolecule separation.	К3
CO-2	Conduct 2D gel electrophoresis for protein profiling and analysis.	К3
CO-3	Isolate and transform plasmid DNA for genetic studies.	K4
CO-4	Purify casein from milk and analyze its biochemical properties.	K3
CO-5	Examine enzymatic and non-enzymatic browning reactions and their implications in food biochemistry.	КЗ
CO-6	Apply immunoelectrophoresis techniques for antigen-antibody	К3

COURSE CONTENTS:

MODULE 1:	Ion Exchange Chromatography and 2D Gel15 HElectrophoresis15 H	
Ion Exchang	e Chromatography and 2D Gel Electrophoresis.	
MODULE 2:	Plasmid Isolation and Protein Purification	15 Hours
Plasmid Isolation, transformation, Purification of Casein from milk.		
MODULE 3:	E 3: Enzymatic and Non-Enzymatic Browning 15 Hou	
Enzymatic and non-enzymatic browning.		
MODULE 4:Immunoelectrophoresis and Ouchterlony Double15 HourDiffusion		15 Hours
TOTAL LECTURES 60 Hour		60 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 1st Sem.
Course Title: Grand Viva - I	Subject Code:TIU-PBT-G151
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

Course Objectives:

1. To integrate and consolidate knowledge gained across all core and elective courses throughout the M.Sc. Biotechnology program through oral examination and critical discussion.

2. To evaluate the student's conceptual understanding, analytical thinking, and problem-solving skills in key areas of biotechnology such as molecular biology, genetics, biochemistry, cell biology, and applied research techniques.

3. To develop confidence and communication skills for presenting and defending scientific viewpoints clearly and logically during viva-voce and technical interviews.

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Biotechnology

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.	
Course Title: Seminar - I	Subject Code:TIU-PBT-S151	
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2	

Course Objectives:

1. To enable students to explore, analyze, and present recent scientificdevelopments and emerging trends in various domains of biotechnology throughliteraturereviewandpresentations.

2. To develop critical thinking, scientific communication, and presentation skills by engaging in peer discussions and expert feedback sessions.

3. To enhance students' ability to critically evaluate scientific literature and understand the methodologies, data interpretation, and significance of research findings.

4. To foster independent learning and academic inquiry, encouraging students to stay updated with contemporary biotechnology research and its applications.

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title:Bioentrepreneurship - I	Subject Code:TIU-PBT-S153
Contact Hours/Week: L-T-P: 2-0-0	Credit: 2

Course Objectives:

1. To introduce students to the fundamentals of bioentrepreneurship and its relevance in the biotechnology industry.

2. To develop skills for identifying business opportunities and preparing business plans in the biotech sector.

3. To familiarize students with the regulatory landscape and IPR management in biotechnology.

4. To enable students to understand the funding mechanisms and commercialization strategies for biotech innovations.

Course Outcomes:

CO Numbers	Course Outcomes	Knowledge levels
CO1	CO1: Understand the basic concepts and scope of bioentrepreneurship. (K1)	К1
CO2	CO2: Analyze market needs and develop business models for biotechnology ventures. (K3)	КЗ
СО3	CO3: Formulate detailed business plans including financial and operational aspects. (K4)	K4
CO4	CO4: Identify and interpret relevant regulatory and IPR frameworks in the Indian context. (K2)	К2

CO5: Evaluate funding options and apply for startup support programs. (K4)	К4
CO6: Design commercialization strategies and assess market viability of biotech innovations. (K4)	K4

Course Contents

Module	Title	Course Content	Hours
Module 1	Introduction to Bioentrepreneurship	Definition and scope of bioentrepreneurship; Role of biotechnology in entrepreneurship; Characteristics of a successful entrepreneur; Case studies of biotech startups in India.	8
Module 2	Business Planning and Development	Idea generation and feasibility analysis; Components of a business plan; Market analysis and business model development; SWOT analysis.	8
Module 3	Regulatory and IPR Aspects	Overview of regulatory environment in India (FSSAI, DBT, CDSCO); Basics of intellectual property rights (IPR) – patents, copyrights, trademarks; Patent filing process and technology transfer.	7
Module 4	Funding and Commercialization	Sources of funding – government grants, venture capital, angel investors; Commercialization strategies for biotech products; Public-private partnerships; Incubation and startup support schemes.	7
Total			30 Hours

M.Tech. Biotechnology AY 2024-25

SEMESTER II

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Proteomics, Genomics, and Bioinformatics	Subject Code:TIU-PBT-T152
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the principles of **genomics**, **proteomics**, **and bioinformatics**, including gene and protein analysis techniques.
- 2. Gain knowledge of **genome sequencing**, **transcriptomics**, **and protein characterization** methods.
- 3. Develop proficiency in using **bioinformatics tools and databases** for genomic and proteomic research.

CO No.	Course Outcome	Knowledge Level (K)
CO-1	Analyze genomic features, gene prediction, and genome-wide association studies (GWAS).	K3
CO-2	Utilize functional genomics techniques to assign gene functions and identify genetic traits.	КЗ
CO-3	Perform transcriptome analysis, including microarray and RNA sequencing data interpretation.	K4
CO-4	Explain proteomics workflows, including 2D electrophoresis and mass spectrometry (MALDI-TOF, MS/MS).	КЗ
CO-5	Investigate post-translational modifications and protein interaction networks.	K4
CO-6	Apply bioinformatics tools and databases for genome and proteome research.	КЗ

Course content

MODULE 1:	GENOMICS:	21 Hours
General featur eukaryotes - G	ne and Genome analysis-Introduction: Genome, Genomics, Omics an es, C-value paradox. Gene identification; Gene prediction in prokaryoto enome-wide association (GWA) analysis -Massively parallel Signature genome Shotgun sequencing, Next Generation Sequencing (NGS) - Cy	es and sequencing
	ing - GDB, NCBI, OMIM, NGI/MGD - Structural annotation - Functional enomics Genome sequencing projects	annotation -
assignment of	nomics - Application of sequence based and structure-based approach gene functions – e.g. sequence comparison, structure analysis (especia and comparison, pattern identification, etc.	
-	e Analysis, Applications of Genomics: Genomic medicine - Synthetic g - Conservation genomics	c biology and
MODULE 2:	Proteomics:	13 Hours
Two-dimensio development c	istry to proteomics:The proteomics workflow, nal electrophoresis (2-DE), Advancement in solubilization of hydroph f immobilized pH gradient strips, gel casting, staining of gels and imag nal fluorescence difference in-gel electrophoresis (DIGE), Blue native 1	ge analysis.
Two-dimensio development o Two-dimensio PAGE), gel free Protein MS ap sequencing of	nal electrophoresis (2-DE), Advancement in solubilization of hydroph f immobilized pH gradient strips, gel casting, staining of gels and imag	e analysis. PAGE (BN- nting; de nov
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ag sequencing of TOF,MS/MS Po	nal electrophoresis (2-DE), Advancement in solubilization of hydroph f immobilized pH gradient strips, gel casting, staining of gels and imag nal fluorescence difference in-gel electrophoresis (DIGE), Blue native proteomics methods. pplications – identifying unknown proteins by peptide mass fingerprin peptides from fragment ion spectra obtained by tandem MS. ESI-TOF,	e analysis. PAGE (BN- nting; de nov
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ap sequencing of TOF,MS/MS Po Interaction p	nal electrophoresis (2-DE), Advancement in solubilization of hydroph of immobilized pH gradient strips, gel casting, staining of gels and imagen al fluorescence difference in-gel electrophoresis (DIGE), Blue native proteomics methods. plications – identifying unknown proteins by peptide mass fingerprint peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, post-translational modifications of proteins - Limitation of proteomics	e analysis. PAGE (BN- nting; de nov
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ap sequencing of TOF,MS/MS Po Interaction pr MODULE 3 :	nal electrophoresis (2-DE), Advancement in solubilization of hydropho of immobilized pH gradient strips, gel casting, staining of gels and image nal fluorescence difference in-gel electrophoresis (DIGE), Blue native b proteomics methods. oplications – identifying unknown proteins by peptide mass fingerprin peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, ost-translational modifications of proteins - Limitation of proteomics roteomics - Protein networks - Expression proteomics	e analysis. PAGE (BN- nting; de nov MALDI-
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ap sequencing of TOF,MS/MS Po Interaction pr MODULE 3: Module 1: Biol	nal electrophoresis (2-DE), Advancement in solubilization of hydropho f immobilized pH gradient strips, gel casting, staining of gels and image nal fluorescence difference in-gel electrophoresis (DIGE), Blue native b proteomics methods. pplications – identifying unknown proteins by peptide mass fingerprin peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, ost-translational modifications of proteins - Limitation of proteomics roteomics - Protein networks - Expression proteomics BIOINFORMATICS	e analysis. PAGE (BN- nting; de nov MALDI-
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ap sequencing of TOF,MS/MS Po Interaction pr MODULE 3: Module 1: Biol Module 2: Hun Module 3: Bioi	nal electrophoresis (2-DE), Advancement in solubilization of hydropho f immobilized pH gradient strips, gel casting, staining of gels and image nal fluorescence difference in-gel electrophoresis (DIGE), Blue native be proteomics methods. oplications – identifying unknown proteins by peptide mass fingerprine peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, ost-translational modifications of proteins - Limitation of proteomics roteomics - Protein networks - Expression proteomics BIOINFORMATICS ogical databases, Biological data sciences in genome research nan Genome Project, Microarray Technology nformatics for Proteomics, Principles of protein structure, Torsion ang	ge analysis. PAGE (BN- nting; de nov MALDI- 11 Hours
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ag sequencing of TOF,MS/MS Po Interaction pr MODULE 3: Module 1: Biol Module 2: Hun Module 3: Bioi Ramachandran	nal electrophoresis (2-DE), Advancement in solubilization of hydropho f immobilized pH gradient strips, gel casting, staining of gels and image nal fluorescence difference in-gel electrophoresis (DIGE), Blue native be proteomics methods. oplications – identifying unknown proteins by peptide mass fingerprine peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, ost-translational modifications of proteins - Limitation of proteomics roteomics - Protein networks - Expression proteomics BIOINFORMATICS ogical databases, Biological data sciences in genome research nan Genome Project, Microarray Technology nformatics for Proteomics, Principles of protein structure, Torsion ang	ge analysis. PAGE (BN- nting; de nov MALDI- 11 Hours
Two-dimensio development of Two-dimensio PAGE), gel free Protein MS ag sequencing of TOF,MS/MS Po Interaction pr MODULE 3: Module 1: Biol Module 2: Hun Module 3: Bioi Ramachandran Module 4: Onto	nal electrophoresis (2-DE), Advancement in solubilization of hydropho f immobilized pH gradient strips, gel casting, staining of gels and image nal fluorescence difference in-gel electrophoresis (DIGE), Blue native is proteomics methods. pplications – identifying unknown proteins by peptide mass fingerprin peptides from fragment ion spectra obtained by tandem MS. ESI-TOF, ost-translational modifications of proteins - Limitation of proteomics roteomics - Protein networks - Expression proteomics BIOINFORMATICS ogical databases, Biological data sciences in genome research nan Genome Project, Microarray Technology nformatics for Proteomics, Principles of protein structure, Torsion ango plot	ge analysis. PAGE (BN- nting; de nov MALDI- 11 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Medical Biotechnology and Therapeutics	Subject Code:TIU-PBT-T154
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand **human physiology**, **disease mechanisms**, **and pharmacological principles** related to medical biotechnology.
- 2. Learn **molecular diagnostics and therapeutic strategies**, including gene therapy and stem cell therapy.
- 3. Explore **stem cell biology, differentiation, and regenerative medicine** for medical applications.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain the principles of human physiology, disease	K2
	classification, and pharmacological concepts.	
CO-2	Understand drug administration, pharmacokinetics, and	К3
	pharmacodynamics.	
CO-3	Apply molecular diagnostic techniques like PCR, microarrays,	K4
	and FACS in disease detection.	
CO-4	Evaluate molecular and cellular therapies , including gene	K4
	therapy, enzyme therapy, and monoclonal antibody therapy.	
CO-5	Explain stem cell biology, differentiation pathways, and their	КЗ
	regulatory mechanisms.	
CO-6	Analyze the role of stem cells in tissue regeneration and	K4
	therapeutic applications.	

COURSE CONTENTS:

MODULE 1:	An Introduction to Medical Biotechnology& Pharmacology:	7 Hours		
Biotechnology and health care; Basic human physiology; Definition of disease and its types: Genetic disease, Metabolic disease, Immune system malfunction and disease, Hormonal disease, Vitamin and minerals deficiency diseases. General Pharmacological Principle; Definition, Routes of drug administration;				
Pharmacokin	etics, Pharmacodynamics.			
Molecular diagnostic – PCR based detection, Microarray and FACS				
MODULE 2:	Invasive Technique:	7 Hours		
Invasive tech	niques - Amniocentesis, Fetoscopy, Chorionic Villi Sampling (CVS	S), Non-		
invasive tech	niques -Ultrasonography, X-ray, TIFA, maternal serum and fetal o	cells in		
maternal bloc	od.			
MODULE 3:	Molecular therapy:	7 Hours		
DNA based va	ccine, RNA based therapeutics, Antisense therapeutics; Enzyme	therapy;		
Hormone therapy; Cytokine therapy; Monoclonal Antibody therapy. An introduction to				
stem cell therapy and regenerative medicine				

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Molecular Biology	Subject Code:TIU-PBT-E152
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the **molecular mechanisms of DNA replication, repair, recombination, transcription, and translation** in prokaryotic and eukaryotic systems.
- 2. Explore **gene regulation, chromatin structure, and intracellular organelle functions** in cellular processes.
- 3. Analyze the **structural organization of genes and chromosomes**, including operons, transposons, and chromatin modifications.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain DNA replication, repair mechanisms, and recombination in prokaryotes and eukaryotes.	K2
CO-2	Describe RNA synthesis, processing, and transport, including splicing and polyadenylation.	К3
CO-3	Analyze protein synthesis and post-translational modifications in gene expression.	K4
CO-4	Compare gene regulation mechanisms at the transcriptional and translational levels.	К3
CO-5	Explain the structural organization and functions of intracellular organelles.	К2
CO-6	Evaluate the organization of genes and chromosomes, chromatin structure, and mobile genetic elements	K4

COURSE CONTENTS

MODULE 1:	Introduction	15 Hours
DNA replica	ation, repair and recombination: Unit of replication, enzymes in	nvolved,
replication of	origin and replication fork, fidelity of replication, extrachromoson	nal replicons,
and DNA da	mage and repair mechanisms.	
initiation co elongation a	esis and processing: Transcription factors and machinery, forma mplex, transcription activators and repressors, RNA polymerases nd termination, RNA processing, RNA editing, splicing, polyadeny d function of different types of RNA, RNA transport.	, capping,
Protein syn	thesis and processing: Ribosome, formation of initiation compl	ex, initiation
factors and t	heir regulation, elongation and elongation factors, termination, g	enetic code,
	ion of tRNA, tRNA-identity, aminoacyltRNA synthetase, translatic	onal proof-
reading, trai	nslational inhibitors, post- translational modification of proteins.	
MODULE 2:	Control of Gene Expression	9 Hours
		<i>i</i> nours
	gene expression at transcription and translation level: Regula	
Control of g phages, viru	gene expression at transcription and translation level: Regula ses, prokaryotic and eukaryotic gene expression, role of chromat	tion of
Control of g phages, viru	gene expression at transcription and translation level: Regula	tion of
Control of g phages, viru	gene expression at transcription and translation level: Regula ses, prokaryotic and eukaryotic gene expression, role of chromat	tion of
Control of g phages, viru regulating g MODULE 3:	gene expression at transcription and translation level: Regula ses, prokaryotic and eukaryotic gene expression, role of chromat ene expression and gene silencing.	tion of in in 4 Hours
Control of g phages, viru regulating g MODULE 3: Structural o	gene expression at transcription and translation level: Regula ses, prokaryotic and eukaryotic gene expression, role of chromat ene expression and gene silencing. Structural Organization of Organelle	tion of in in 4 Hours l, nucleus,
Control of g phages, viru regulating g MODULE 3: Structural o mitochondri	gene expression at transcription and translation level: Regula ses, prokaryotic and eukaryotic gene expression, role of chromat ene expression and gene silencing. Structural Organization of Organelle organization and function of intracellular organelles: Cell wal	tion of in in 4 Hours l, nucleus, plastids,
Control of g phages, viru regulating g MODULE 3: Structural o mitochondri vacuoles, ch	gene expression at transcription and translation level: Regulation ses, prokaryotic and eukaryotic gene expression, role of chromatiene expression and gene silencing. Structural Organization of Organelle organization and function of intracellular organelles: Cell walka, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes,	tion of in in 4 Hours l, nucleus, plastids,
Control of g phages, viru regulating g MODULE 3: Structural o mitochondri vacuoles, ch MODULE 4:	Sene expression at transcription and translation level: Regulation sets, prokaryotic and eukaryotic gene expression, role of chromat ene expression and gene silencing. Structural Organization of Organelle Organization and function of intracellular organelles: Cell wal a, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, loroplast, structure & function of cytoskeleton and its role in mot	tion of in in 4 Hours l, nucleus, plastids, ility 17 Hours
Control of g phages, viru regulating g MODULE 3: Structural o mitochondri vacuoles, ch MODULE 4: Organizatio	Sene expression at transcription and translation level: Regulation sets, prokaryotic and eukaryotic gene expression, role of chromatiene expression and gene silencing. Structural Organization of Organelle Organization and function of intracellular organelles: Cell wal a, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, loroplast, structure & function of cytoskeleton and its role in mot Organization of Genes and Chromosomes	tion of in in 4 Hours l, nucleus, plastids, ility 17 Hours families,
Control of g phages, viru regulating g MODULE 3: Structural o mitochondri vacuoles, ch MODULE 4: Organizatio structure of	Sene expression at transcription and translation level: Regulation sets, prokaryotic and eukaryotic gene expression, role of chromatiene expression and gene silencing. Structural Organization of Organelle Organization and function of intracellular organelles: Cell walk a, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, loroplast, structure & function of cytoskeleton and its role in motion of genes and chromosomes: Operon, interrupted genes, gene	tion of in in 4 Hours l, nucleus, plastids, ility 17 Hours families,

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Molecular Immunology-I	Subject Code: TIU-PBT-E154
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand **immune signal transduction, endocytosis, and cell motility** in the immune response.
- 2. Explore cellular communication in immunity, including adhesion molecules and cytokines.
- 3. Analyzeimmune responses in tumor immunity, host-parasite interactions, and diagnostic applications.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain immune signal transduction pathways and immune cell motility .	K2
CO-2	Describe communication between immune cells, cytokine functions, and adhesion molecules.	К3
CO-3	Analyze immune responses in tumor immunity and host- parasite interactions.	K4
CO-4	Evaluate the role of cell signaling in current immunodiagnostics and treatments.	K4
CO-5	Interpret the molecular basis of immune system regulation and dysfunction.	К5
CO-6	Apply advanced immunological techniques for disease diagnosis and therapy .	К5

COURSE CONTENTS

MODULE 1:	Immune Signal Transduction and Cell Motility	7 Hours
Immune signa response	al transduction, Immune endocytosis, Immune cell motility	r, Cell stress
MODULE 2:	Communication in the Immune System	10 Hours
Communicati	on between cells of immune systems, adhesion molecules,	cytokines.
MODULE 3:	Immunity Against Tumors and Host-Parasite	11 Hours
	Interactions	
Immunity aga	inst tumors, host-parasite interactions.	
MODULE 4:	Cell Signaling in Diagnostics and Therapy	17 Hours
Cell signaling	in current diagnostics and treatment.	
TOTAL LECTU	IRES	45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Recombinant DNA and Protein Engineering-I	Subject Code: TIU-PBT-E158
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand protein structure, stability, folding mechanisms, and associated diseases.
- 2. Explore protein engineering techniques, including mutagenesis, recombinant expression, and industrial applications.
- 3. Analyzeproteomics approaches for protein identification, biomarker discovery, and drug development.

CO No.	Course Outcome	Knowledge Level (K)
CO-1	Explain the fundamentals of protein structure, stability, and folding mechanisms.	K2
CO-2	Identify techniques for studying protein folding, structure determination, and molecular chaperones.	K3
CO-3	Apply protein engineering strategies, including mutagenesis and recombinant protein expression.	K4
CO-4	Evaluate protein-ligand interactions and structure-function relationships in engineered proteins.	K5
CO-5	Utilize proteomics techniques such as 2D-PAGE, mass spectrometry, and biomarker discovery.	K5
CO-6	Assess the role of proteomics in drug development, disease diagnosis, and therapeutic advancements.	K6

COURSE CONTENT

MODULE 1:	Protein Stability & Folding	15 Hours
Protein stah	 ility and folding: Overview of protein structure, Higher level st	ructure
	ity, Mechanism of protein folding, Folding Rate, Molten globule;	
	of protein folding;: NMR, CD spectroscopy, Proteolysis; Location	-
	chaperones, chaperonin and co-chaperons, Proteasomes and pro-	
	tein degradation; Protein folding errors: Alzheimer's, prions and	
(BSE, CJD), Cystic Fibrosis and cancer. Determination of secondary structure- UV, CD and		
fluorescence	Determination of quaternary structure - X-ray, Cryo TEM;	ctional
proteins - He	moglobin and some well characterized enzymes / lectins / pept	de hormons;
Chemical mo	difications	
MODULE 2:	Protein Engineering	12 Hours
Protein engi	neering: Introduction to steps of Protein design and Engineerin	g, protein
-		
splicing and i	ts application; Production of Novel Proteins; Random and site d	irected
	ts application; Production of Novel Proteins; Random and site d Methods for Expressing Recombinant Proteins; Industrial appli	
mutagenesis,		cations of
mutagenesis, Protein Engir	Methods for Expressing Recombinant Proteins; Industrial appli	cations of Specificity,
mutagenesis, Protein Engir Cofactor requ	Methods for Expressing Recombinant Proteins; Industrial appli neering (Engineering of Stability, affinity for substrate, Protease	cations of Specificity, text of protein
mutagenesis, Protein Engir Cofactor requ ligand interac	Methods for Expressing Recombinant Proteins; Industrial appli neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions	cations of Specificity, text of protein
mutagenesis, Protein Engir Cofactor requ	Methods for Expressing Recombinant Proteins; Industrial appli neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con-	cations of Specificity, text of protein
mutagenesis, Protein Engir Cofactor requi ligand interact	Methods for Expressing Recombinant Proteins; Industrial appli neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions	cations of Specificity, text of protein 18 Hours
mutagenesis, Protein Engir Cofactor requisitation ligand interact MODULE 3: Proteomics:	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions	cations of Specificity, text of protein 18 Hours 2-D PAGE):
mutagenesis, Protein Engir Cofactor requi ligand interact MODULE 3: Proteomics: Protein pre-fi	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein
mutagenesis, Protein Engir Cofactor requiligand interact MODULE 3: Proteomics: Protein pre-fit spot. Protein	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (ractionation and sample preparation, IEF, SDS-PAGE, visualization	cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein MS, PMF,
mutagenesis, Protein Engir Cofactor requiligand interact MODULE 3: Proteomics: Protein pre-fit spot. Protein protein seque Proteomics in	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease airements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (ractionation and sample preparation, IEF, SDS-PAGE, visualizati- identification by mass spectrometry: ESI-TOF, MALDI-TOF, MS/ encing; Post translational modification, Application of proteome a Drug Development; Diagnosis of diseases by Proteomics; Prote	cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein MS, PMF, analysis; in array;
mutagenesis, Protein Engir Cofactor requiligand interact MODULE 3: Proteomics: Protein pre-fr spot. Protein protein seque Proteomics in Discovery of the seque	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease nirements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (ractionation and sample preparation, IEF, SDS-PAGE, visualizati- identification by mass spectrometry: ESI-TOF, MALDI-TOF, MS/ encing; Post translational modification, Application of proteome n Drug Development; Diagnosis of diseases by Proteomics; Prote- new biomarker; identification of protein-protein interactions and	cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein MS, PMF, analysis; in array;
mutagenesis, Protein Engir Cofactor requiligand interact MODULE 3: Proteomics: Protein pre-fr spot. Protein protein seque Proteomics in Discovery of the seque	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease airements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (ractionation and sample preparation, IEF, SDS-PAGE, visualizati- identification by mass spectrometry: ESI-TOF, MALDI-TOF, MS/ encing; Post translational modification, Application of proteome a Drug Development; Diagnosis of diseases by Proteomics; Prote	cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein MS, PMF, analysis; in array;
mutagenesis, Protein Engir Cofactor requiligand interact MODULE 3: Proteomics: Protein pre-fr spot. Protein protein seque Proteomics in Discovery of the seque	Methods for Expressing Recombinant Proteins; Industrial appli- neering (Engineering of Stability, affinity for substrate, Protease airements of Protein). Structure-function correlations in the con- ctions & protein protein/nucleic acid/carbohydrate interactions Proteomics Introduction to proteomics; Two dimensional electrophoresis (ractionation and sample preparation, IEF, SDS-PAGE, visualizati- identification by mass spectrometry: ESI-TOF, MALDI-TOF, MS/ encing; Post translational modification, Application of proteome n Drug Development; Diagnosis of diseases by Proteomics; Prote- new biomarker; identification of protein-protein interactions and roteomics in drug delivery.	cations of Specificity, text of protein 18 Hours 2-D PAGE): on of protein MS, PMF, analysis; in array;

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Nanotechnology and Nanotherapeutics-I	Subject Code: TIU-PBT-E156
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the fundamental principles of nanoscience, nanotechnology, and different types of nanoparticles.
- 2. Explore the synthesis, characterization, and stability of nanoparticles using advanced techniques.
- 3. Analyze the biomedical applications of nanotechnology, including nanomedicine, biosensors, and nanotoxicity.

CO No.	Course Outcome	Knowledge
		Level (K)
CO-1	Explain the principles of nanoscience, types of nanoparticles,	К2
	and their unique properties.	
CO-2	Describe the methods of nanoparticle synthesis,	K3
	characterization techniques, and stability assessment.	
CO-3	Analyze naturally occurring bio-nanoparticles, molecular	K4
	motors, and ion channels as molecular switches.	
CO-4	Evaluate nanomedicine applications, including drug delivery	K4
	systems, smart drugs, and biosensors.	
CO-5	Interpret the impact of nanotechnology in medicine and assess	K5
	potential nanotoxicity risks.	
CO-6	Apply nanotechnology-based tools for biomedical research,	K5
	diagnostics, and therapeutic innovations.	

COURSE CONTENT

MODULE 1:	Introduction	10 Hours
Introduction	to Nanoscience and nanotechnology; Solid State Chemistry and E	and Theory;
Concept of 3I), 2D, 1D and 0D nano particles. , Different important types of nai	noparticles:
Quantum Dot	, Nanowire, Nanotube, Nano-cage, Buckminster fullerene (60) et	c. Special
Properties of	Nanoparticles and its differences from bulk mater. Application o	f
Nanomateria	S.	
MODULE 2:	Synthesis & Characterization	12 Hours
Synthesis and	characterization of nanoparticles and nano-structured machine	ry: Top-
Down and Bo	ttom-Up Approach: Physical, Chemical, Green synthesis of Nanor	oarticles.
Characterizat	ion of Nanoparticles: UV-VIS Spectroscopy, DLS, FTIR, XRD, TEM	, SEM, SPM
(Atomic Force	e Microscopy (AFM), Scanning Tunneling Microscopy (STM)). Sta	bility of
Nanoparticle	and ZETA Potential	
MODULE 3:	Bio-nanotechnology	6 Hours
Introduction	to Bio-nanotechnology, naturally found nanoparticles, Molecular	motors:
natural moleo	cular motors like myosin, kinesin, dynein, flagella, ATP synthase,	RNA and
DNA helicase	s, topoisomerases etc. Ion channels as molecular switches.	
MODULE 4:	Nanomedicine & Applications	17 Hours
Introduction	to Nanomedicine, Application of Nanomedicine; Biosensors; Bioc	legradeable
nanonarticles	for drug and gene delivery to cells and tissues: liposome, dendri	mer, gold
nanoparticies		arabatica
*	, silver nano particle. Smart Drugs, DNA based nano devices, Nan	or obotics,
nano particle	, silver nano particle. Smart Drugs, DNA based nano devices, Nan Diagnosis and treatment. Nanotoxicity.	of obotics,

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Plant Molecular Biology, and Biotechnology-I	Subject Code: TIU-PBT-E160
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the **fundamentals of plant molecular biology, genetic engineering, and transformation techniques**.
- 2. Explore **plant tissue culture techniques** and their role in **biotic and abiotic stress resistance**.
- 3. Apply **molecular markers and genomic tools** for **genotyping, diversity analysis, and crop improvement**.

CO No.	Course Outcome	Knowledg
		e Level (K)
CO-1	Explain the fundamental concepts of plant genes, genomes,	K2
	and gene cloning techniques.	
CO-2	Demonstrate various plant transformation methods , including	K2
	Agrobacterium-mediated gene transfer.	
CO-3	Analyzegenetic engineering strategies for biotic and abiotic	K4
	stress resistance in plants.	
CO-4	Apply plant tissue culture techniques , including somatic	КЗ
	embryogenesis and micropropagation.	
CO-5	Utilize molecular markers (RFLP, RAPD, SNP, AFLP) for plant	КЗ
	genotyping and diversity analysis.	
CO-6	Interpret modern genomic tools such as RNA sequencing and	КЗ
	microarray analysis for plant biotechnology.	

COURSE CONTENT

	Plant Genes and Genetic Transformation	10 Hours		
Introduction to Plant genes and genome. Gene cloning, Genetic engineering techniques, -				
DNA, RNA and Protein blotting, Basics of gene cloning, identification and selection of				
recombinants, Vector construction, First strand cDNA synthesis, PCR Primer designing,				
Semi-quantit	ative RTPCR, Quantitative Real time PCR (qPCR), Microarray and	RNAseq		
analysis. Gen	etic Transformation Various transformation methods; Agrobac	terium-		
-	e delivery; T-DNA transfer; Disarming the Ti plasmid; Vector des			
Screenable a	nd selectable markers; Chloroplast transformation Plant expressi	ion vectors.		
MODULE 2:	Stress Resistance and Quality Improvement	10 Hours		
Strategies for	Introducing Biotic and Abiotic Stress Resistance/Tolerance Vi	ral		
resistance; Fi	ungal resistance; Insects and pathogens resistance; Drought, salir	nity, thermal		
stress, floodi	ng and submergence tolerance. • Genetic Engineering for Quality			
Improvement and Other Traits Post-harvest bioengineering; Concept of biofactories;				
mprovemen	t and Other Traits Post-harvest bloengineering; Concept of blo	factories;		
•	sistance; Phytoremediation; Nutraceuticals; Molecular means of h			
•				
Herbicide res				
Herbicide res breeding. MODULE 3:	sistance; Phytoremediation; Nutraceuticals; Molecular means of h	ieterosis		
Herbicide res breeding. MODULE 3: Plant Tissue	sistance; Phytoremediation; Nutraceuticals; Molecular means of h	neterosis 10 Hours		
Herbicide res breeding. MODULE 3: Plant Tissue Micropropag	Sistance; Phytoremediation; Nutraceuticals; Molecular means of h Plant Tissue Culture Culture - somatic embryogenesis; Artificial seed production;	neterosis 10 Hours		
Herbicide res breeding. MODULE 3: Plant Tissue Micropropag	Sistance; Phytoremediation; Nutraceuticals; Molecular means of h Plant Tissue Culture Culture - somatic embryogenesis; Artificial seed production; ation; Soma clonal variation; Androgenesis; Germplasm conserva	neterosis 10 Hours		
Herbicide res breeding. MODULE 3: Plant Tissue (Micropropag cryopreserva MODULE 4:	Plant Tissue Culture Culture - somatic embryogenesis; Artificial seed production; ation; Soma clonal variation; Androgenesis; Germplasm conserva	10 Hours ation and 15 Hours		
Herbicide res breeding. MODULE 3: Plant Tissue (Micropropag cryopreserva MODULE 4: Genomic and	Plant Tissue Culture Culture - somatic embryogenesis; Artificial seed production; ation; Soma clonal variation; Androgenesis; Germplasm conservation; Protoplast Culture and somatic hybridization. Genomic Tools and Molecular Markers	neterosis 10 Hours ation and 15 Hours is and		
Herbicide res breeding. MODULE 3: Plant Tissue (Micropropag cryopreserva MODULE 4: Genomic and population di	Sistance; Phytoremediation; Nutraceuticals; Molecular means of here is a straight for the second st	neterosis 10 Hours ation and 15 Hours is and		

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: GLYCOBIOLOGY AND ALLIED DISEASES-I	Subject Code: TIU-PBT-E162
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the **structural diversity and functional significance of carbohydrates** in biological systems.
- 2. Explore glycosylation mechanisms, carbohydrate-processing enzymes, and their roles in health and disease.
- 3. Analyzeglycan-related disorders and their implications in therapeutics and immunity.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Describe the structural classification and biological roles of	K2
	carbohydrates and glycoconjugates.	
CO-2	Explain the function of carbohydrate-active enzymes	К2
	(CAZymes) in glycan metabolism.	
CO-3	Investigate the role of glycoproteins, proteoglycans, and	K4
	glycolipids in cellular processes and diseases.	
CO-4	Analyze the importance of glycosylation in protein trafficking ,	КЗ
	immune response, and microbial interactions.	
CO-5	Evaluate the role of lectins and bacterial toxins in host-	КЗ
	pathogen interactions.	
CO-6	Interpret the molecular basis of glycan-related diseases and	К3
	therapeutic applications.	

COURSE CONTENTS

Carbohydrate structure- Simple, complex and conjugate. CAZyme structure/ function			
relationships Common sugars in plant, microbial and animals- Cell wall, structural glycans.			
Glycosides- Glycosyl transferases (GTs), Glycoside hydrolases and transglycosidases (GHs),			
Carbohydrate binding modules (CBMs), Polysaccharide lyases (PLs), Carbohydrate			
s) Glycoproteins Vs Proteoglycans, N- and O-linked glycans			
Cellular Trafficking and Glycolipids	15 Hours		
orane trafficking and trafficking of N-glycoproteins, O-Linked gly	cosylation,		
ucin type glycoproteins Glycolipids- Glycosphingolipids and asso	ociated		
in- Carbohydrate complex.			
Enzymes and Bioethanol Production	10 Hours		
llulases, Xylanases, Amylases, Xyloglucanases, Xyloglucan endo-			
ases. Sucrose bioethanol, starch bioethanol, lignocellulosic bioeth	nanol Roles		
in protein trafficking,			
Lectins, Toxins, and Glycan Diseases	10 Hours		
innate immunity, therapeutic glycoprotein clearance Lectins- Toxicity and applications of			
plant lectins, Lectins as microbial toxins and bacterial adhesion molecules Influenza -			
hemagglutinins and neuraminidases, Fabry and Schindler diseases, Blood groups and			
nterconversion			
TOTAL LECTURES 45 Hours			
	lycosyl transferases (GTs), Glycoside hydrolases and transglycos binding modules (CBMs), Polysaccharide lyases (PLs), Carbohyd s) Glycoproteins Vs Proteoglycans, N- and O-linked glycans Cellular Trafficking and Glycolipids brane trafficking and trafficking of N-glycoproteins, O-Linked gly fucin type glycoproteins Glycolipids- Glycosphingolipids and asso in- Carbohydrate complex. Enzymes and Bioethanol Production Ilulases, Xylanases, Amylases, Xyloglucanases, Xyloglucan endo- ases. Sucrose bioethanol, starch bioethanol, lignocellulosic bioeth fficking, Lectins, Toxins, and Glycan Diseases ity, therapeutic glycoprotein clearance Lectins- Toxicity and app Lectins as microbial toxins and bacterial adhesion molecules Infl ns and neuraminidases, Fabry and Schindler diseases, Blood grount enterconversion		

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Advanced Bioanalytical Techniques-II	Subject Code: TIU-PBT-L152
Contact Hours/Week: L-T-P 0-0-4	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop **proficiency in advanced bioanalytical techniques for biomolecular analysis**.
- 2. Gain hands-on experience in protein characterization, nucleic acid analysis, and immunoassays.
- 3. Apply **bioanalytical methods in biomedical and biotechnological research**.

CO No.	Course Outcome	Knowledge Level (K)
CO-1	Perform ELISA for antigen-antibody interaction analysis.	K2
CO-2	Analyze protein unfolding using tryptophan fluorescence spectroscopy.	K2
CO-3	Conduct blood grouping experiments to understand antigen- antibody specificity.	К3
CO-4	Execute SDS-PAGE and Size Exclusion Chromatography for protein separation and molecular weight estimation	К3
CO-5	Utilize HPTLC for high-resolution separation of biomolecules.	К3
CO-6	Implement Southern blotting techniques for DNA detection and hybridization studies.	K4

COURSE CONTENTS:

MODULE 1:	Ion Exchange Chromatography and 2D Gel Electrophoresis	15 Hours
Ion Exchange	Chromatography and 2D Gel Electrophoresis.	
MODULE 2:	Plasmid Isolation and Protein Purification	15 Hours
Plasmid Isolati	ion, transformation, Purification of Casein from milk.	
MODULE 3:	Enzymatic and Non-Enzymatic Browning	15 Hours
Enzymatic an	d non-enzymatic browning.	
MODULE 4:	Immunoelectrophoresis and Ouchterlony Double Diffusion	15 Hours
TOTAL LECTURES		

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Bioentrepreneurship - II	Subject Code:TIU-PBT-S154
Contact Hours/Week: L-T-P: 2-0-0	Credit: 2

Course Objectives:

1. To equip students with knowledge of regulatory frameworks and compliance relevant to biotech enterprises.

2. To develop understanding of financial planning, budgeting, and funding avenues for biotech ventures.

3. To provide insights into strategic commercialization and market entry of biotech products.

CO No.	Course Outcomes	Knowledge Level
C01	Demonstrate understanding of business planning and strategic decision-making in biotech startups.	К2
CO2	Explain regulatory compliance requirements applicable to biotech- based enterprises.	К2
СО3	Analyze different financial models and fundraising strategies for bio- ventures.	КЗ
CO4	Apply financial tools to manage biotech enterprise budgets and operations.	КЗ
CO5	Evaluate commercialization strategies for scaling up laboratory innovations.	K4
CO6	Design a biotech product launch roadmap including licensing and partnerships.	K4

Course Outcomes:

Course content

Module	Title	Course Content	Hours
		Writing and refining a business plan;	
	Advanced Business	SWOT analysis; Competitive	
Module 1	Planning and Strategy	landscape;	8
		Understanding biotech regulations;	
		Regulatory bodies (CDSCO, DBT,	
	Regulatory Affairs and	FSSAI, etc.); IP protection; Bioethics	
Module 2	Compliance in Biotech	and biosafety compliance.	8
		Sources of funding: venture capital, government grants; Financial	
Module 3	Fundraising and Financial Management	statements; Budgeting; ROI and cost analysis.	7
	Commercialization and	From lab to market; Tech transfer offices; Product launch strategies; Market analysis and penetration;	
Module 4	Scale-up Strategies	Licensing and collaborations.	7
			30
TOTAL			HOURS

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.
Course Title: Project proposal submission & presentation	Subject Code: TIU-PBT-P152
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

Course Objective:

1. To introduce students to the fundamentals of research proposal writing.

2. To enable critical review of scientific literature for identifying research gaps.

3. To guide students in drafting structured and compelling research proposals.

4. To train students in effective scientific presentation techniques.

CO Number	Course Outcomes	Knowledge Level
C01	Understand the structure and purpose of a scientific research proposal.	K1
CO2	Conduct comprehensive literature reviews and identify research gaps.	К2
CO3	Formulate clear research objectives and hypotheses.	К3
CO4	Draft a well-organized and scientifically sound project proposal.	К4
CO5	Demonstrate proficiency in presenting scientific ideas using visual tools.	К3
C06	Engage in peer feedback and refine proposals based on constructive critique.	K4

Course Content:

Module	Course Content	Contact Hours
Module 1: Introduction to Research Proposal Writing	Overview of research proposal components, importance of proposals in research, funding agency expectations, ethical considerations.	15
Module 2: Literature Review and Problem Identification	Techniques for comprehensive literature review, tools and databases, identifying gaps, defining problem statements and objectives.	15
Module 3: Proposal Drafting and Structuring	Structuring the proposal: title, abstract, introduction, methodology, budget, expected outcomes, timeline; writing styles and referencing.	15
Module 4: Presentation and Peer Review	Presentation skills development, use of visual aids, mock presentations, peer and faculty feedback sessions.	15
Total		60 HOURS

Program: M. Tech. in Biotechnology	Year, Semester: 1st Yr., 2nd Sem.	
Course Title: Seminar - II	Subject Code:TIU-PBT-S152	
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2	

Course Objectives:

1. To enable students to explore, analyze, and present recent scientific
developments and emerging trends in various domains of biotechnology through
literatureliteraturereviewandpresentations.

2. To develop critical thinking, scientific communication, and presentation skills by engaging in peer discussions and expert feedback sessions.

3. To enhance students' ability to critically evaluate scientific literature and understand the methodologies, data interpretation, and significance of research findings.

4. To foster independent learning and academic inquiry, encouraging students to stay updated with contemporary biotechnology research and its applications.

M.Tech. Biotechnology AY 2024-25

SEMESTER III

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Plant Molecular Biology, and Biotechnology-II	Subject Code: TIU-PBT-P253B
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- Gain an advanced understanding of plant genome organization and regulatory DNA elements relevant to gene expression and genetic engineering.
- Develop in-depth knowledge of cutting-edge gene editing tools such as CRISPR/Cas systems and their application in precise genome modification.
- Explore high throughput "omics" approaches (transcriptomics, proteomics, metabolomics) and systems biology for deciphering complex traits in plants.
- Understand advanced strategies and tools for efficient genetic transformation, including organellar transformation and synthetic biology applications.
- Examine translational plant biotechnology approaches for developing climateresilient, nutrient-enriched crops and molecular farming applications.
- Evaluate biosafety regulations, ethical concerns, and global perspectives in deploying advanced plant biotechnologies.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Understand the structure of plant genomes and the function of regulatory DNA elements involved in gene expression and engineering.	K2
CO-2	Apply genome editing tools like CRISPR/Cas for targeted modification of plant traits and evaluate gene editing outcomes.	КЗ
CO-3	Analyze transcriptomic, proteomic, and metabolomic data to interpret gene function and regulatory networks in plants.	K4

CO-4	Demonstrate the design and application of advanced plant transformation strategies including synthetic biology and organelle genome engineering.	К3
CO-5	Evaluate molecular breeding techniques and genomic approaches for trait improvement in crops under stress and changing environments.	К5
CO-6	Assess the ethical, regulatory, and biosafety considerations in the development and deployment of genetically engineered and edited crops.	К5

COURSE CONTENT

MODULE 1:	Advanced Gene Cloning and Expression Systems	9 Hours
Overview of	plant genome organization; Advanced gene cloning strategies;	Promoters and
regulatory el	ements (inducible, tissue-specific, synthetic promoters); Enhar	ncers, silencers,
insulators; Bi	inary and ternary vector systems; Reporter genes.	
MODULE 2:	Plant Genome Editing Technologies	10 Hours
CRISPR/Cas	systems (Cas9, Cas12, base and prime editing); CRISPR multipl	exing; Gene
knockout and	d knock-in strategies; Delivery methods for CRISPR component	ts; Off-target
effects and m	nitigation; Regulatory perspectives on genome-edited crops.	
MODULE 3:	Omics and Systems Biology in Plants	9 Hours
Transcripton	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Functi	ec),
Transcripton Metabolomic Systems biol	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Functiogy approaches for trait improvement; Bioinformatics tools an	ec), onal genomics; d databases.
Transcripton Metabolomic	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Functi	ec), onal genomics;
Transcripton Metabolomic Systems biol MODULE 4:	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Functiogy approaches for trait improvement; Bioinformatics tools an	ec), onal genomics; d databases. 9 Hours
Transcripton Metabolomic Systems biol MODULE 4 : Transformati	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Specs, Interactomics; Data integration and network biology; Functiogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications	ec), onal genomics; d databases. 9 Hours ondrial
Transcripton Metabolomic Systems biol MODULE 4: Transformation	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Functiogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications ion efficiency enhancement strategies; Chloroplast and mitoched	ec), onal genomics; d databases. 9 Hours ondrial
Transcripton Metabolomic Systems biol MODULE 4: Transformati transformations silencing and	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Specs, Interactomics; Data integration and network biology; Functiogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications ion efficiency enhancement strategies; Chloroplast and mitocheon; Marker-free transformation; Synthetic biology in plants; Tr	ec), onal genomics; d databases. 9 Hours ondrial
Transcripton Metabolomic Systems biole MODULE 4: Transformati transformati silencing and MODULE 5:	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Function ogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications ion efficiency enhancement strategies; Chloroplast and mitocheon; Marker-free transformation; Synthetic biology in plants; Transformation; Precision trait stacking; Biosafety and bioethics.	ec), onal genomics; d databases. 9 Hours ondrial cansgene 8 Hours
Transcripton Metabolomic Systems biol MODULE 4: Transformati transformati silencing and MODULE 5: Molecular br	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Function ogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications ion efficiency enhancement strategies; Chloroplast and mitocheon; Marker-free transformation; Synthetic biology in plants; Translational Plant Biotechnology	ec), onal genomics; d databases. 9 Hours ondrial cansgene 8 Hours (GWAS);
Transcripton Metabolomic Systems biole MODULE 4: Transformatic silencing and MODULE 5: Molecular bro Genomic sele	nics (RNAseq analysis pipelines), Proteomics (2D-Gel, Mass Speces, Interactomics; Data integration and network biology; Function ogy approaches for trait improvement; Bioinformatics tools an Advanced Genetic Transformation and Applications ion efficiency enhancement strategies; Chloroplast and mitocheon; Marker-free transformation; Synthetic biology in plants; Translational Plant Biotechnology eeding and speed breeding; Genome-wide association studies (ec), onal genomics; d databases. 9 Hours ondrial cansgene 8 Hours (GWAS);

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr., 3rd Sem.	
Course Title: Environmental Biotechnology	Subject Code: TIU-PBT-P253F	
Contact Hours/Week: L-T-P 3-0-0	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the principles and applications of biotechnology in environmental management.
- 2. Explore microbial processes for pollution control and bioremediation.
- 3. Develop biotechnological strategies for sustainable development.
- 4. Analyze ethical and regulatory considerations in environmental biotechnology.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Demonstrate knowledge of microbial biotechnology for environmental applications.	K2
CO-2	Apply bioremediation and wastewater treatment techniques.	КЗ
CO-3	Utilize bioengineering tools for sustainable waste management.	K4
CO-4	Evaluate bioenergy production and environmental monitoring techniques.	K4
CO-5	Classify different Biosensors and pollution detection systems	K5
CO-6	Analyze regulatory frameworks and ethical concerns in environmental biotechnology.	К5

COURSE CONTENT

MODULE 1:	Introduction to Environmental Biotechnology	8 Hours
Environment	al pollution, microbial interactions, biodegradation pathw	vays.
MODULE 2:	Bioremediation and Waste Management	7 Hours
Biodegradatio	on of pollutants, phytoremediation, solid waste treatment	t.
MODULE 3:	Wastewater Treatment and Biofiltration	7 Hours
Microbial trea	atment of industrial wastewater, biofiltration techniques.	I
MODULE 4:	Bioenergy and Biofuels	6 Hours
Biogas, bioeth	nanol, biodiesel production, microbial fuel cells.	I
Module 5:	Environmental Monitoring and Biosensors	5 Hours
Biosensors fo	r pollutant detection, bioreporters, bioindicators.	I
Module 6:	Ethical and Regulatory Aspects	12 Hours
Environment	al laws, biotechnology regulations, ethical concerns.	I
TOTAL LECTU	IRES	45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr., 3rd Sem.	
Course Title: Bioinformatics	Subject Code: TIU-PBT-P253E	
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand core computational techniques in bioinformatics.
- 2. Explore fundamental bioinformatics tools for genomics, proteomics, and systems biology.
- 3. Apply computational methods to analyze biological data.
- 4. Develop an understanding of regulatory and ethical aspects in bioinformatics research.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Demonstrate knowledge of sequencing techniques and bioinformatics tools.	K2
CO-2	Apply computational approaches to analyze genomic and proteomic data.	КЗ
CO-3	Utilize database management and sequence alignment techniques.	K4
CO-4	Evaluate molecular modeling and drug discovery applications.	K4
CO-5	Understand systems biology and network analysis.	K5
CO-6	Understand regulatory, ethical, and privacy aspects of bioinformatics.	K5

MODULE 1:	Introduction to Bioinformatics	8 Hours
Bioinformatio	s databases, sequence alignment, molecular phylogenetic	S.
MODULE 2:	Genomics and Proteomics	7 Hours
Genome sequ	encing, transcriptomics, protein structure analysis.	
MODULE 3:	Computational Tools and Data Analysis	7 Hours
BLAST, FAST	A, multiple sequence alignment, structural bioinformatics	5. 6 Hours
Molecular do	king, homology modeling, structure-based drug design.	
Module 5:	Systems Biology and Network Analysis	8 Hours
Pathway anal	ysis, gene regulatory networks, metabolic modelling.	I
Module 6:	Ethical and Regulatory Aspects	8 Hours
Data privacy,	intellectual property, bioinformatics policies.	I
TOTAL LECTU	IRES	45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr., 3rd Sem.
Course Title: Recombinant DNA Technology and Protein Engineering-II	Subject Code: TIU-PBT-P253D
Contact Hours/Week: L-T-P 3-0-0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

Enable the student to:

- 1. Understand advanced molecular cloning, gene expression, and genome engineering techniques.
- 2. Explore novel strategies for protein engineering, design, and functional optimization.
- 3. Analyze high-throughput techniques for recombinant protein production and characterization.
- 4. Evaluate translational applications of recombinant DNA technology in therapeutics, diagnostics, and synthetic biology..

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain advanced cloning strategies and genome editing technologies.	К2
CO-2	Describe protein engineering approaches and functional optimization.	КЗ
CO-3	Analyze recombinant protein expression, purification, and characterization methods.	K4
CO-4	Evaluate synthetic biology applications in protein design and metabolic engineering.	K4
CO-5	Interpret industrial and therapeutic applications of recombinant DNA and protein engineering.	К5
CO-6	Apply regulatory guidelines and bioethical considerations in genetic engineering.	К5

COURSE CONTENTS

	Advanced Cloning and Gene Manipulation	7 Hours
	nd its applications, Gibson assembly and seamless cloning,	
mutagenesis te	chniques, Advanced vector design strategies, Homologous	recombination and
synthetic genes	s, Genome-wide screening technologies.	
MODULE 2:	Recombinant Protein Expression Systems	8 Hours
Prokaryotic exp	pression systems (E. coli), Yeast and fungal expression plat	forms, Mammalian ce
	on systems, Codon optimization and gene synthesis, Induci	
-	nents. Challenges in high-yield protein expression.	
MODULE 3:	Protein Purification and Characterization	9 Hours
Affinity chroma	atography techniques, Ion exchange and size exclusion chro	omatography, Protein
refolding and s	tabilization, Mass spectrometry for protein analysis, Struct	ural characterization
using X-ray/NM	AR, Case studies on recombinant protein purification, High-	-throughput protein
analysis techni	ques	
MODULE 4 Directed evolut	Protein Engineering and Design tion and mutagenesis, Computational modeling and AI in pr	6 Hours
Directed evolut Functional assa	Protein Engineering and Design tion and mutagenesis, Computational modeling and AI in prays for engineered proteins, Rational protein design strategoteins in therapeutics.	rotein engineering,
Directed evolut Functional assa	tion and mutagenesis, Computational modeling and AI in prays for engineered proteins, Rational protein design strateg	rotein engineering,
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec	tion and mutagenesis, Computational modeling and AI in provide the second strateget of the second stra	rotein engineering, gies, Case studies on 6 Hours bodies, insulin, chway
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in	tion and mutagenesis, Computational modeling and AI in provide the second stratege of the s	rotein engineering, gies, Case studies on 6 Hours bodies, insulin, chway
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in MODULE 6	tion and mutagenesis, Computational modeling and AI in provide the second stratege of the s	rotein engineering, gies, Case studies on 6 Hours oodies, insulin, thway erapeutics. 9 Hours
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in MODULE 6 FDA and EMA g	tion and mutagenesis, Computational modeling and AI in provide the second secon	rotein engineering, gies, Case studies on 6 Hours bodies, insulin, chway erapeutics. 9 Hours ament of GMOs, Ethica
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in MODULE 6 FDA and EMA g concerns in ger	tion and mutagenesis, Computational modeling and AI in provide the second secon	rotein engineering, gies, Case studies on 6 Hours oodies, insulin, thway erapeutics. 9 Hours ument of GMOs, Ethica lectual property right
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in MODULE 6 FDA and EMA g concerns in ger Public percepti	tion and mutagenesis, Computational modeling and AI in providence of the second	rotein engineering, gies, Case studies on 6 Hours oodies, insulin, thway erapeutics. 9 Hours ment of GMOs, Ethica lectual property right mas in biotech, Future
Directed evolut Functional assa engineered pro MODULE 5: Recombinant e hormones, Rec engineering in MODULE 6 FDA and EMA g concerns in ger Public percepti	tion and mutagenesis, Computational modeling and AI in provide the second proteins, Rational protein design strateges for engineered proteins, Rational protein design strateges in the second proteins in the second proteins, Rational protein design strateges in the second proteins and The second proteins and The second proteins in the second proteins and the second proteins, Metabolic pat synthetic biology, Future trends in recombinant protein the Regulatory and Ethical Aspect guidelines for recombinant products, Biosafety and contain the and protein engineering, Regulatory approvals and intellion of genetic engineering, Case studies on bioethical dileminated protein and protein second proteins and protein second proteins and protein second proteins and protein	rotein engineering, gies, Case studies on 6 Hours oodies, insulin, thway erapeutics. 9 Hours ment of GMOs, Ethica lectual property right mas in biotech, Future

Program: M. Tech. in Biotechnology	Year, Semester: 2 nd Yr., 3rd Sem.	
Course Title: Molecular Immunology II	Subject Code: TIU-PBT-P253C	
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- Understand advanced immunological concepts including immunometabolism, neuroimmunology, and transplant immunology.
- Explore the interaction between the immune system and systemic functions such as the nervous system and metabolism.
- Analyze immune challenges in transplantation, aging, and chronic diseases.
- Evaluate the role of cutting-edge immunological techniques in diagnostics and therapy.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain the impact of metabolism on immune function and regulation.	K2
CO-2	Describe the communication between the immune and nervous systems.	КЗ
CO-3	Analyze immune responses in mucosal immunity and microbiota interactions.	K4
CO-4	Evaluate immunological challenges in organ transplantation and rejection.	K4
CO-5	Interpret the molecular basis of immunosenescence and chronic immune-related diseases.	К5
CO-6	Apply emerging immunotechnologies for disease diagnosis and therapy.	К5

COURSE CONTENTS

MODULE 1:	Immunometabolism and Systemic Immunity	7 Hours
Immunometa disorders.	bolism, energy demands, metabolic pathways, immune regula	tion, metabolic
MODULE 2:	Neuroimmunology and Stress-Immune Interactions	8 Hours
Brain-immun microglia.	e interactions, cytokines, stress and immunity, autoimmune no	euro diseases,
MODULE 3:	Mucosal and Barrier Immunity	8 Hours
Mucosal imm	une system, microbiota, vaccines, barrier immunity in inflamn	nation.
MODULE 4:	Transplant Immunology and Immune Tolerance	7 Hours
Transplant in	nmunology, graft rejection, immune tolerance, immunosuppre	ssive therapies.
MODULE 5:	Immunosenescence and Chronic Inflammation	8 Hours
Aging immun research.	e decline, inflammaging, age-related diseases, longevity	
MODULE 6: E	merging Immunotechnologies and Future Trends	7 Hours
Single-cell im personalized	munology, AI in immunology, organoids, vaccine advances, medicine.	
Total Lectur	es	45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr., 3rd Sem.	
Course Title: Nanotechnology and Nanotherapeutics-II	Subject Code: TIU-PBT-P253	
Contact Hours/Week: L-T-P: 3-0-0	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand advanced nanotechnology applications in drug delivery, diagnostics, and theranostics.
- 2. Explore nanomaterials for biomedical applications, including nanoparticles, quantum dots, and nanocarriers.
- 3. Analyze toxicity, biocompatibility, and regulatory aspects of nanotherapeutics.
- 4. Evaluate cutting-edge nanotechnology-based treatment strategies for diseases.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Explain the properties and synthesis of advanced nanomaterials for biomedical use.	K2
CO-2	Describe nanocarriers and targeted drug delivery mechanisms.	КЗ
CO-3	Analyze nanotoxicity, biocompatibility, and safety concerns in nanomedicine.	K4
CO-4	Evaluate nanotechnology applications in imaging, biosensing, and theranostics.	K4
CO-5	Interpret the clinical translation, regulatory challenges, and commercialization of nanotherapeutics.	К5
CO-6	Apply recent advancements in nanotechnology for disease diagnosis and treatment.	К5

COURSE CONTENT

MODULE 1:	Advanced Nanomaterials for Medicine	7 Hours
Nanoparticles	s, carbon nanostructures, quantum dots, nanocomposites, biocor	ijugation.
MODULE 2:	Nanocarriers and Drug Delivery Systems	8 Hours
Liposomes, de responsive sy	endrimers, polymeric nanocarriers, targeted drug delivery, stim stems.	ali-
MODULE 3:	Nanotoxicology and Biocompatibility	8 Hours
Cellular inter	actions, toxicity mechanisms, risk assessment, in vitro and in viv	o studies.
MODULE 4:	Nanotechnology in Imaging and Theranostics	7 Hours
Nano-bio inte	eractions, biosensors, nanoparticle-based imaging, hybrid nanom	aterials.
Module 5:	Regulatory and Clinical Translation of Nanotherapeutics	8 Hours
FDA guideline	es, GMP standards, clinical trials, commercialization strategies.	I
Module 6:	Emerging Trends in Nanomedicine	8 Hours
AI in nanotec immunothera	hnology, 3D nanoprinting, personalized nanomedicine, nano-bas pies.	sed
TOTAL LECTU	IRES	45 Hours

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title: Research Methodology and Scientific Communication Skills	Subject Code:TIU-PBT-S253
Contact Hours/Week: L-T-P: 2-0-0	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop a **comprehensive understanding of research methodology in biotechnology**.
- 2. Gain skills in data collection, scientific writing, and effective research communication.
- 3. Understand research ethics, intellectual property rights, and funding opportunities.

CO No.	Course Outcome	Knowledg e Level (K)
CO-1	Identify different types of research and their significance in biotechnology.	K2
CO-2	Apply appropriate research designs and data collection techniques.	К3
CO-3	Utilize statistical tools for data analysis and interpretation.	К3
CO-4	Develop scientific writing skills for research articles, theses, and grant proposals.	K4
CO-5	Deliver effective oral and poster presentations for scientific communication.	К3
CO-6	Demonstrate awareness of research ethics, plagiarism, and intellectual property rights.	K4

COURSE CONTENTS :

MODULE 1:	Introduction to Research Methodology	5 Hours		
Definition and	Definition and Objectives of Research			
o Types of research (basic, applied, qualitative, quantitative)				
o Purpo	o Purpose and significance of research in biotechnology			
• Resear	rch Process and Problem Identification			
0	Defining research problem, reviewing literature			
0	Hypothesis formulation and objectives setting			
• Resear	rch Design and Methods			
0	Types of research designs (experimental, descriptive, case studi	ies)		
0	Choosing appropriate methodology in biotech research			
MODULE 2:	Data Collection and Analysis	5 Hours		
Module 2Data	a Collection Techniques			
0	o Sampling methods, surveys, experiments, observational studies			
0	Ethical considerations in data collection			
• Data A	nalysis Techniques			
0	 Descriptive and inferential statistics 			
0	Use of software tools (e.g., SPSS, R, MATLAB) for data analysis			
0	Interpretation and presentation of data in graphical formats			
MODULE 3:	Scientific Writing and Documentation	5 Hours		
Introd	uction to Scientific Writing	I		
0	 Structure of a scientific paper: Title, abstract, introduction, methods, results, discussion, conclusion, and references 			
0	o Writing proposals, research articles, and review papers			
• Citatio	on and Referencing			
0	Understanding plagiarism, ethical writing practices			
0	 Citation styles (e.g., APA, MLA, IEEE) and reference management tools (e.g., EndNote, Mendeley, Zotero) 			
• Report Writing and Thesis Preparation				

o Thesis structure, formatting, and presenta	tion	
o Preparing tables, figures, and appendix		
MODULE 4: Scientific Communication Skills	5 Hours	
Oral Presentation Skills		
o Planning and delivering effective scientific	c presentations	
o Use of visual aids and slide design for acad	lemic presentations	
• Poster Presentation		
 Designing and presenting scientific poster 	S	
o Engaging with the audience and answering	g questions	
• Effective Communication for Different Audiences		
 Communicating research to non-experts 		
o Preparing and delivering elevator pitches	for research	
MODULE 5: Research Ethics and Intellectual Prope	erty 10 Hours	
• Ethics in Research		
o Understanding plagiarism, data integrity, a	and research misconduct	
 Ethical guidelines in biotechnology and bio 	omedical research	
• Intellectual Property Rights (IPR)		
 Patents, copyrights, trademarks, and trade 	e secrets	
o Importance of IPR in biotechnology, filing patents, and copyright basics		
• Systematic Reviews and Meta-Analysis		
o Literature search, data synthesis, and inter	rpretation	
• Grant Writing and Funding Opportunities		
o Basics of grant writing, structuring grant p	proposals	
o Sources of funding for research in biotech	nology	
• Emerging Techniques and Trends in Scientific Co	mmunication	
o Use of digital and social media for research	h dissemination	
o Open-access publishing, preprints, and op-	en science initiatives.	
TOTAL LECTURES	30 Hours	

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Biotechnology

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title: Training	Subject Code:TIU-PBT-P263
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. To provide hands-on exposure to industrial/research laboratory practices in biotechnology.
- 2. To develop technical and analytical skills through real-world training environments.
- 3. To familiarize students with standard operating procedures, safety, and documentation followed in biotech industries.

To enhance communication, teamwork, and professional ethics among students during the training experience.

CO Number	Course Outcomes	Knowle dge levels
C01	Identify and describe the roles, responsibilities, and functions of professionals in a biotechnology setup.	K1
CO2	Demonstrate proficiency in handling instruments and techniques commonly used in industrial/research laboratories.	К2
CO3	Apply learned skills to solve technical problems and perform experimental procedures effectively.	K3
CO4	Analyze and interpret data collected during training to draw meaningful conclusions.	K4
CO5	Communicate technical findings through written reports and oral presentations.	К3
CO6	Exhibit professionalism, ethical behavior, and collaboration during industry/research training.	К2

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title:Project Progress Presentation	Subject Code: TIU-PBT-P265
Contact Hours/Week: L-T-P: 0-0-24	Credit: 12

Course Objective:

- 1. To guide students in effectively communicating their research progress.
- 2. To enhance students' skills in data interpretation, analysis, and presentation.
- 3. To provide a platform for receiving feedback from faculty and peers.
- 4. To develop scientific reasoning and defense skills.

Course Outcome Code	Course Outcome Statement	Knowledge Level
CO1	Summarize research objectives, methodology, and progress made.	К2
CO2	Interpret experimental data and derive meaningful conclusions.	КЗ
CO3	Demonstrate effective scientific presentation and communication skills.	КЗ
CO4	Apply critical thinking to improve the quality and clarity of research output.	K4
CO5	Analyze and incorporate feedback from supervisors and peer discussions.	K4
CO6	Defend research findings and justify scientific approaches used.	K4

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Biotechnology

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title:Grand Viva-III	Subject Code:TIU-PBT-G251
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

Course Objectives:

- 1. To assess the overall understanding and integration of theoretical and practical knowledge acquired throughout the MTech Biotechnology program.
- 2. To evaluate the student's ability to articulate complex scientific concepts with clarity and precision.
- 3. To enhance critical thinking and problem-solving skills through oral examination.
- 4. To prepare students for professional scientific discussions and interviews in academic or industry settings.

CO Numbers	Course Outcomes	Knowledge levels
C01	Demonstrate a comprehensive understanding of core and advanced topics in biotechnology.	К4
CO2	Critically analyze and interpret scientific data and experimental outcomes.	K4
CO3	Effectively communicate scientific concepts, both orally and in written form.	К3
CO4	Integrate interdisciplinary knowledge to propose solutions to biotechnological problems.	К4
CO5	Exhibit readiness for higher education, research, or professional roles in the biotechnology sector.	КЗ
CO6	Respond confidently and accurately to questions reflecting knowledge breadth and depth.	К4

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title:Seminar-III	Subject Code:TIU-PBT-S251
Contact Hours/Week: L-T-P: 0-0-6	Credit: 3

Course objectives:

- 1. To develop in-depth understanding of current research trends in biotechnology.
- 2. To enhance literature search, comprehension, and critical analysis skills.
- 3. To improve scientific communication, presentation, and discussion skills.
- 4. To foster the ability to synthesize complex information and formulate informed opinions.

CO Number	Course Outcome	Knowledge Level
C01	Identify and explain key advances in biotechnology literature.	К2
CO2	Analyze scientific literature for relevance, novelty, and impact.	К4
CO3	Demonstrate effective scientific presentation and communication skills.	КЗ
CO4	Critically evaluate peer presentations and provide constructive feedback.	K4
CO5	Summarize current developments in biotechnology through literature reviews.	К2
C06	Formulate research questions or hypotheses based on existing studies.	K4

M.Tech. Biotechnology AY 2024-25

SEMESTER IV

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title:Project III: Thesis submission and Presentation	Subject Code:TIU-PBT-P252
Contact Hours/Week: L-T-P: 0-0-36	Credit: 18

Course objectives:

- 1. To enable students to undertake independent research and apply theoretical knowledge in practical problem-solving.
- 2. To develop critical thinking, data analysis, and scientific writing skills.
- 3. To enhance communication skills through report preparation and oral presentation of findings

CO Numbers	Course Outcomes (COs)	Knowledg e Level
CO1	Identify and formulate a clear research problem and define relevant objectives.	КЗ
CO2	Design and execute experiments or simulations with appropriate methodologies.	K4
CO3	Analyze and interpret experimental data using statistical and computational tools.	K4
CO4	Critically evaluate results and draw scientifically valid conclusions.	K4
CO5	Communicate scientific findings effectively through technical writing and presentations.	КЗ
CO6	Demonstrate independent thinking, project management, and ethical research practices.	K4

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title: Teaching Ability Assessment	Subject Code:TIU-PBT-P260
Contact Hours/Week: L-T-P: 2-0-0	Credit: 2

Course objectives:

- 1. To evaluate the teaching preparedness and presentation skills of the student.
- 2. To develop the ability to plan and deliver lectures effectively to diverse audiences.
- 3. To assess the use of appropriate pedagogical tools and interactive teaching methods.
- 4. To build confidence in explaining complex scientific concepts clearly and concisely.

CO Number	Course Outcome	Knowledg e Level
CO1	Demonstrate effective teaching and communication skills suitable for academic settings.	К3
C02	Design and deliver structured lectures with clarity and engagement.	K4
C03	Integrate modern teaching aids and ICT tools into lesson plans.	К3
CO4	Adapt teaching methods based on feedback and audience understanding.	K4
C05	Critically analyze teaching sessions to improve pedagogical approach.	K4
CO6	Display confidence and competence in handling queries and classroom interaction.	К3

TECHNO INDIA UNIVERSITY

W E S T B E N G A L Department of Biotechnology

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title: Quiz & Grand Viva -IV	Subject Code:TIU-PBT-G252
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

Course Objectives:

1. To assess the comprehensive knowledge gained by students across various subjects in biotechnology.

2. To develop the ability to integrate interdisciplinary knowledge and apply it to research and problem-solving.

3. To enhance students' confidence and communication skills through rigorous questioning and evaluation.

4. To evaluate students' preparedness for professional, academic, or research careers.

CO Numbers	Course Outcomes	Knowledge Level
C01	Recall fundamental and advanced concepts in biotechnology for quiz and viva evaluation.	K1
C02	Explain interdisciplinary topics with clarity and scientific accuracy during the viva voce.	K2
C03	Apply core and advanced biotechnology principles to solve hypothetical and real-life scenarios.	К3
CO4	Analyze research problems, experimental designs, and scientific literature during viva.	K4
C05	Evaluate data interpretation, troubleshooting, and decision- making under viva conditions.	К5
C06	Communicate ideas effectively and defend scientific reasoning confidently.	КЗ

Program: M. Tech. in Biotechnology	Year, Semester: 2nd Yr, 3rd Sem.
Course Title:Seminar-IV	Subject Code:TIU-PBT-S252
Contact Hours/Week: L-T-P: 0-0-4	Credit: 2

Course Objectives:

- 1. To enhance students' ability to conduct literature reviews and identify relevant scientific content.
- 2. To develop skills in scientific presentation and effective communication of complex topics.
- 3. To encourage critical thinking and peer discussion on current advancements in biotechnology.
- 4. To build confidence in public speaking and academic discussion.

CO Numbers	Course Outcomes	Knowledge Levels
C01	Identify and summarize relevant scientific literature in the field of biotechnology.	К2
C02	Analyze and evaluate current research topics in biotechnology.	K4
СО3	Develop and deliver well-structured scientific presentations.	КЗ
CO4	Demonstrate proficiency in using visual aids and digital tools for academic presentations.	КЗ
C05	Engage in critical discussion and provide constructive feedback to peers.	K4
CO6	Exhibit confidence and clarity in scientific communication and defense.	КЗ